Skip to main content
Top
Published in: International Journal of Legal Medicine 3/2011

01-05-2011 | Original Article

Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing

Authors: Jana Naue, Timo Sänger, Ulrike Schmidt, Rachel Klein, Sabine Lutz-Bonengel

Published in: International Journal of Legal Medicine | Issue 3/2011

Login to get access

Abstract

Mitochondrial DNA analysis plays an important role in forensic science as well as in the diagnosis of mitochondrial diseases. The occurrence of two different nucleotides at the same sequence position can be caused either by heteroplasmy or by a mix of samples. The detection of superimposed positions in forensic samples and their quantification can provide additional information and might also be useful to identify a mixed sample. Therefore, the detection and visualization of heteroplasmy has to be robust and sensitive at the same time to allow for reliable interpretation of results and to avoid a loss of information. In this study, different factors influencing the analysis of mitochondrial heteroplasmy (DNA polymerases, PCR and sequencing primers, nucleotide incorporation, and sequence context) were examined. BigDye Sanger sequencing and the SNaPshot minisequencing were compared as to the accuracy of detection using artificially created mitochondrial DNA mixtures. Both sequencing strategies showed to be robust, and the parameters tested showed to have a variable impact on the display of nucleotide ratios. However, experiments revealed a high correlation between the expected and the measured nucleotide ratios in cell mixtures. Compared to the SNaPshot minisequencing, Sanger sequencing proved to be the more robust and reliable method for quantification of nucleotide ratios but showed a lower detection sensitivity of minor cytosine components.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lutz S, Weisser HJ, Heizmann J, Pollak S (1996) mtDNA as a tool for identification of human remains. Identification using mtDNA. Int J Leg Med 109:205–209CrossRef Lutz S, Weisser HJ, Heizmann J, Pollak S (1996) mtDNA as a tool for identification of human remains. Identification using mtDNA. Int J Leg Med 109:205–209CrossRef
2.
go back to reference Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis—validation and use for forensic casework. Forensic Sci Rev 11:21–50 Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis—validation and use for forensic casework. Forensic Sci Rev 11:21–50
3.
go back to reference Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4:119–141PubMedCrossRef Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4:119–141PubMedCrossRef
4.
go back to reference Szibor R, Plate I, Schmitter H, Wittig H, Krause D (2006) Forensic mass screening using mtDNA. Int J Leg Med 120:372–376CrossRef Szibor R, Plate I, Schmitter H, Wittig H, Krause D (2006) Forensic mass screening using mtDNA. Int J Leg Med 120:372–376CrossRef
5.
go back to reference Wong LJC, Boles RG (2005) Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 354:1–20PubMedCrossRef Wong LJC, Boles RG (2005) Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 354:1–20PubMedCrossRef
6.
go back to reference Gocke CD, Benko FA, Rogan PK (1998) Transmission of mitochondrial DNA heteroplasmy in normal pedigrees. Hum Genet 102:182–186PubMedCrossRef Gocke CD, Benko FA, Rogan PK (1998) Transmission of mitochondrial DNA heteroplasmy in normal pedigrees. Hum Genet 102:182–186PubMedCrossRef
7.
go back to reference Salas A, Lareu MV, Carracedo A (2001) Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report. Int J Leg Med 114:186–190CrossRef Salas A, Lareu MV, Carracedo A (2001) Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report. Int J Leg Med 114:186–190CrossRef
8.
go back to reference Alonso A, Salas A, Albarrán C, Arroyo E, Castro A, Crespillo M, di Lonardo AM, Lareu MV, Cubría CL, Soto ML, Lorente JA, Semper MM, Palacio A, Paredes M, Pereira L, Lezaun AP, Brito JP, Sala A, Vide MC, Whittle M, Yunis JJ, Gómez J (2002) Results of the 1999–2000 collaborative exercise and proficiency testing program on mitochondrial DNA of the GEP-ISFG: an inter-laboratory study of the observed variability in the heteroplasmy level of hair from the same donor. Forensic Sci Int 125:1–7PubMedCrossRef Alonso A, Salas A, Albarrán C, Arroyo E, Castro A, Crespillo M, di Lonardo AM, Lareu MV, Cubría CL, Soto ML, Lorente JA, Semper MM, Palacio A, Paredes M, Pereira L, Lezaun AP, Brito JP, Sala A, Vide MC, Whittle M, Yunis JJ, Gómez J (2002) Results of the 1999–2000 collaborative exercise and proficiency testing program on mitochondrial DNA of the GEP-ISFG: an inter-laboratory study of the observed variability in the heteroplasmy level of hair from the same donor. Forensic Sci Int 125:1–7PubMedCrossRef
9.
go back to reference Cavelier L, Johannisson A, Gyllensten U (2000) Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp Cell Res 259:79–85PubMedCrossRef Cavelier L, Johannisson A, Gyllensten U (2000) Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp Cell Res 259:79–85PubMedCrossRef
10.
go back to reference Deckman KH, Levin BC, Helmerson K, Kishore RB, Reiner JE (2008) Isolation and characterization of a single mitochondrion. US patent 2008/0254530A1, pp 10–16 Deckman KH, Levin BC, Helmerson K, Kishore RB, Reiner JE (2008) Isolation and characterization of a single mitochondrion. US patent 2008/0254530A1, pp 10–16
11.
go back to reference Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N, Tully G, Evett I, Hagelberg E, Sullivan K (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6:130–135PubMedCrossRef Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N, Tully G, Evett I, Hagelberg E, Sullivan K (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6:130–135PubMedCrossRef
12.
go back to reference Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12:417–420PubMedCrossRef Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12:417–420PubMedCrossRef
13.
go back to reference Brandstätter A, Sänger T, Lutz-Bonengel S, Parson W, Béraud-Colomb E, Wen B, Kong QP, Bravi CM, Bandelt HJ (2005) Phantom mutation hotspots in human mitochondrial DNA. Electrophoresis 26:3414–3429PubMedCrossRef Brandstätter A, Sänger T, Lutz-Bonengel S, Parson W, Béraud-Colomb E, Wen B, Kong QP, Bravi CM, Bandelt HJ (2005) Phantom mutation hotspots in human mitochondrial DNA. Electrophoresis 26:3414–3429PubMedCrossRef
14.
go back to reference Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL (2000) A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet 67:432–443PubMedCrossRef Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL (2000) A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet 67:432–443PubMedCrossRef
15.
go back to reference Lutz-Bonengel S, Sänger T, Parson W, Müller H, Ellwart JW, Follo M, Bonengel B, Niederstätter H, Heinrich M, Schmidt U (2008) Single lymphocytes from two healthy individuals with mitochondrial point heteroplasmy are mainly homoplasmic. Int J Leg Med 122:189–197CrossRef Lutz-Bonengel S, Sänger T, Parson W, Müller H, Ellwart JW, Follo M, Bonengel B, Niederstätter H, Heinrich M, Schmidt U (2008) Single lymphocytes from two healthy individuals with mitochondrial point heteroplasmy are mainly homoplasmic. Int J Leg Med 122:189–197CrossRef
16.
go back to reference Irwin JA, Saunier JL, Niederstätter H, Strouss KM, Sturk KA, Diegoli TM, Brandstätter A, Parson W, Parsons TJ (2009) Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 68:516–527PubMedCrossRef Irwin JA, Saunier JL, Niederstätter H, Strouss KM, Sturk KA, Diegoli TM, Brandstätter A, Parson W, Parsons TJ (2009) Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 68:516–527PubMedCrossRef
17.
go back to reference Macmillan C, Lach B, Shoubridge EA (1993) Variable distribution of mutant mitochondrial DNAs (tRNA(Leu[3243])) in tissues of symptomatic relatives with MELAS: the role of mitotic segregation. Neurology 43:1586–1590PubMed Macmillan C, Lach B, Shoubridge EA (1993) Variable distribution of mutant mitochondrial DNAs (tRNA(Leu[3243])) in tissues of symptomatic relatives with MELAS: the role of mitotic segregation. Neurology 43:1586–1590PubMed
18.
go back to reference Jazin EE, Cavelier L, Eriksson I, Oreland L, Gyllensten U (1996) Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci USA 93:12382–12387PubMedCrossRef Jazin EE, Cavelier L, Eriksson I, Oreland L, Gyllensten U (1996) Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci USA 93:12382–12387PubMedCrossRef
19.
go back to reference Calloway CD, Reynolds RL, Herrin GL Jr, Anderson WW (2000) The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet 66:1384–1397PubMedCrossRef Calloway CD, Reynolds RL, Herrin GL Jr, Anderson WW (2000) The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet 66:1384–1397PubMedCrossRef
20.
go back to reference Lacan M, Thèves C, Amory S, Keyser C, Crubézy E, Salles JP, Ludes B, Telmon N (2009) Detection of the A189G mtDNA heteroplasmic mutation in relation to age in modern and ancient bones. Int J Leg Med 123:161–167CrossRef Lacan M, Thèves C, Amory S, Keyser C, Crubézy E, Salles JP, Ludes B, Telmon N (2009) Detection of the A189G mtDNA heteroplasmic mutation in relation to age in modern and ancient bones. Int J Leg Med 123:161–167CrossRef
21.
go back to reference Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779PubMedCrossRef Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779PubMedCrossRef
22.
go back to reference Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRef Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRef
23.
go back to reference Cassandrini D, Calevo MG, Tessa A, Manfredi G, Fattori F, Meschini MC, Carrozzo R, Tonoli E, Pedemonte M, Minetti C, Zara F, Santorelli FM, Bruno C (2006) A new method for analysis of mitochondrial DNA point mutations and assess levels of heteroplasmy. Biochem Biophys Res Commun 342:387–393PubMedCrossRef Cassandrini D, Calevo MG, Tessa A, Manfredi G, Fattori F, Meschini MC, Carrozzo R, Tonoli E, Pedemonte M, Minetti C, Zara F, Santorelli FM, Bruno C (2006) A new method for analysis of mitochondrial DNA point mutations and assess levels of heteroplasmy. Biochem Biophys Res Commun 342:387–393PubMedCrossRef
25.
go back to reference Köhnemann S, Sibbing U, Pfeiffer H, Hohoff C (2008) A rapid mtDNA assay of 22 SNPs in one multiplex reaction increases the power of forensic testing in European Caucasians. Int J Leg Med 122:517–523CrossRef Köhnemann S, Sibbing U, Pfeiffer H, Hohoff C (2008) A rapid mtDNA assay of 22 SNPs in one multiplex reaction increases the power of forensic testing in European Caucasians. Int J Leg Med 122:517–523CrossRef
26.
go back to reference Brandstätter A, Parson W (2003) Mitochondrial DNA heteroplasmy or artefacts—a matter of the amplification strategy? Int J Leg Med 117:180–184CrossRef Brandstätter A, Parson W (2003) Mitochondrial DNA heteroplasmy or artefacts—a matter of the amplification strategy? Int J Leg Med 117:180–184CrossRef
27.
go back to reference Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147PubMedCrossRef Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147PubMedCrossRef
28.
go back to reference Wong LJ, Scaglia F, Graham BH, Craigen WJ (2010) Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 100:111–117PubMedCrossRef Wong LJ, Scaglia F, Graham BH, Craigen WJ (2010) Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 100:111–117PubMedCrossRef
29.
go back to reference Kolocheva TI, Nevinsky GA, Volchkova VA, Levina AS, Khomov VV, Lavrik OI (1989) DNA polymerase I (Klenow fragment): role of the structure and length of a template in enzyme recognition. FEBS Lett 248:97–100PubMedCrossRef Kolocheva TI, Nevinsky GA, Volchkova VA, Levina AS, Khomov VV, Lavrik OI (1989) DNA polymerase I (Klenow fragment): role of the structure and length of a template in enzyme recognition. FEBS Lett 248:97–100PubMedCrossRef
30.
go back to reference Parker LT, Deng Q, Zakeri H, Carlson C, Nickerson DA, Kwok PY (1995) Peak height variations in automated sequencing of PCR products using Taq dye-terminator chemistry. Biotechniques 19:116–121PubMed Parker LT, Deng Q, Zakeri H, Carlson C, Nickerson DA, Kwok PY (1995) Peak height variations in automated sequencing of PCR products using Taq dye-terminator chemistry. Biotechniques 19:116–121PubMed
31.
go back to reference Rosenblum BB, Lee LG, Spurgeon SL, Khan SH, Menchen SM, Heiner CR, Chen SM (1997) New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res 25:4500–4504PubMedCrossRef Rosenblum BB, Lee LG, Spurgeon SL, Khan SH, Menchen SM, Heiner CR, Chen SM (1997) New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res 25:4500–4504PubMedCrossRef
32.
go back to reference Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89PubMedCrossRef Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89PubMedCrossRef
33.
go back to reference Andréasson H, Nilsson M, Budowle B, Frisk S, Allen M (2006) Quantification of mtDNA mixtures in forensic evidence material using pyrosequencing. Int J Leg Med 120:383–390CrossRef Andréasson H, Nilsson M, Budowle B, Frisk S, Allen M (2006) Quantification of mtDNA mixtures in forensic evidence material using pyrosequencing. Int J Leg Med 120:383–390CrossRef
34.
go back to reference Bai RK, Wong LJ (2004) Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 50:996–1001PubMedCrossRef Bai RK, Wong LJ (2004) Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 50:996–1001PubMedCrossRef
35.
go back to reference Oberacher H, Niederstätter H, Parson W (2007) Liquid chromatography–electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms. Int J Leg Med 121:57–67CrossRef Oberacher H, Niederstätter H, Parson W (2007) Liquid chromatography–electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms. Int J Leg Med 121:57–67CrossRef
36.
go back to reference Satoh M, Kuroiwa T (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 196:137–140PubMedCrossRef Satoh M, Kuroiwa T (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 196:137–140PubMedCrossRef
Metadata
Title
Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing
Authors
Jana Naue
Timo Sänger
Ulrike Schmidt
Rachel Klein
Sabine Lutz-Bonengel
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
International Journal of Legal Medicine / Issue 3/2011
Print ISSN: 0937-9827
Electronic ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-011-0549-6

Other articles of this Issue 3/2011

International Journal of Legal Medicine 3/2011 Go to the issue