Skip to main content
Top
Published in: European Archives of Psychiatry and Clinical Neuroscience 3/2021

01-04-2021 | Antidepressant Drugs | Invited Review

Esketamine: a glimmer of hope in treatment-resistant depression

Authors: Upinder Kaur, Bhairav Kumar Pathak, Amit Singh, Sankha Shubhra Chakrabarti

Published in: European Archives of Psychiatry and Clinical Neuroscience | Issue 3/2021

Login to get access

Abstract

The motive of this article is to review the pharmacological and clinical aspects of esketamine (ESK), an NMDA-receptor antagonist approved recently by the FDA for treatment-resistant depression (TRD). PubMed/Medline database was searched using keywords ‘esketamine’ and ‘depression’, ‘S-ketamine’ and ‘depression’, and ‘NMDA antagonist’ and ‘depression’. Individual trials were searched from ClinicalTrials.gov. We included English-language articles evaluating pharmacokinetics and pharmacodynamics of intranasal (IN) esketamine, along with clinical trial data related to its efficacy and safety in patients diagnosed with TRD. Compared to placebo, IN esketamine causes significant and rapid improvement in depression. Dizziness, vertigo, headache, increase in blood pressure are some of its common adverse effects. With the growing number of patients of TRD, additional effective and safe treatment is the need of the hour. Esketamine appears to be an effective therapy when combined with oral antidepressants in patients with TRD. It is of special value due to the rapid onset of its action. Long-term clinical studies are, however, needed to ascertain its safety profile.
Literature
1.
go back to reference World Health Organization (2017) Depression and other common mental disorders. Inst Health Natl 1:1–22 World Health Organization (2017) Depression and other common mental disorders. Inst Health Natl 1:1–22
2.
go back to reference Stassen HH, Angst J (1998) Delayed onset of action of antidepressants. CNS Drugs 9(3):177–184 Stassen HH, Angst J (1998) Delayed onset of action of antidepressants. CNS Drugs 9(3):177–184
3.
go back to reference Carvalho AF, Sharma MS, Brunoni AR, Vieta E, Fava GA (2016) The safety, tolerability and risks associated with the use of newer generation antidepressant drugs: a critical review of the literature. Psychother Psychosom 85(5):270–288PubMed Carvalho AF, Sharma MS, Brunoni AR, Vieta E, Fava GA (2016) The safety, tolerability and risks associated with the use of newer generation antidepressant drugs: a critical review of the literature. Psychother Psychosom 85(5):270–288PubMed
4.
go back to reference Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC et al (2018) Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression. JAMA Psychiatry 75(2):139PubMed Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC et al (2018) Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression. JAMA Psychiatry 75(2):139PubMed
5.
go back to reference Morrison RL, Fedgchin M, Singh J, Van Gerven J, Zuiker R, Lim KS et al (2018) Effect of intranasal esketamine on cognitive functioning in healthy participants: a randomized, double-blind, placebo-controlled study. Psychopharmacology 235(4):1107–1119PubMedPubMedCentral Morrison RL, Fedgchin M, Singh J, Van Gerven J, Zuiker R, Lim KS et al (2018) Effect of intranasal esketamine on cognitive functioning in healthy participants: a randomized, double-blind, placebo-controlled study. Psychopharmacology 235(4):1107–1119PubMedPubMedCentral
6.
go back to reference Canuso CM, Singh JB, Fedgchin M, Alphs L, Lane R, Lim P et al (2018) Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized placebo-controlled study. Am J Psychiatry 175(7):620–630PubMed Canuso CM, Singh JB, Fedgchin M, Alphs L, Lane R, Lim P et al (2018) Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized placebo-controlled study. Am J Psychiatry 175(7):620–630PubMed
8.
go back to reference Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P et al (2019) Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry 176(6):428–438PubMed Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P et al (2019) Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry 176(6):428–438PubMed
9.
go back to reference Ochs-Ross R, Daly EJ, Zhang Y, Lane R, Lim P, Foster K et al (2018) Efficacy and safety of intranasal esketamine plus an oral antidepressant in elderly patients with treatment-resistant depression. Biol Psychiatry 83(9):S391 Ochs-Ross R, Daly EJ, Zhang Y, Lane R, Lim P, Foster K et al (2018) Efficacy and safety of intranasal esketamine plus an oral antidepressant in elderly patients with treatment-resistant depression. Biol Psychiatry 83(9):S391
10.
go back to reference Bahr R, Lopez A, Rey JA (2019) Intranasal esketamine (SpravatoTM) for use in treatment-resistant depression in conjunction with an oral antidepressant. Pharm Ther 44(6):340–375 Bahr R, Lopez A, Rey JA (2019) Intranasal esketamine (SpravatoTM) for use in treatment-resistant depression in conjunction with an oral antidepressant. Pharm Ther 44(6):340–375
11.
go back to reference Daly EJ, Trivedi MH, Janik A, Li H, Zhang Y, Li X et al (2019) Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry 76(9):893–990PubMedPubMedCentral Daly EJ, Trivedi MH, Janik A, Li H, Zhang Y, Li X et al (2019) Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry 76(9):893–990PubMedPubMedCentral
12.
go back to reference Wajs E, Aluisio L, Morrison R et al. Long-term safety of esketamine nasal spray plus oral antidepressant in patients with treatment-resistant depression: phase 3, open-label, safety and efficacy study (SUSTAIN-2). In: American Society of Clinical Psychopharmacology Annual Meeting; Miami, Florida. 2018. Wajs E, Aluisio L, Morrison R et al. Long-term safety of esketamine nasal spray plus oral antidepressant in patients with treatment-resistant depression: phase 3, open-label, safety and efficacy study (SUSTAIN-2). In: American Society of Clinical Psychopharmacology Annual Meeting; Miami, Florida. 2018.
13.
go back to reference Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354PubMed Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354PubMed
14.
go back to reference Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864PubMed Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864PubMed
15.
go back to reference Corriger A, Pickering G (2019) Ketamine and depression: a narrative review. Drug Des Dev Ther 13:3051–3067 Corriger A, Pickering G (2019) Ketamine and depression: a narrative review. Drug Des Dev Ther 13:3051–3067
16.
go back to reference Rosenblat JD, Carvalho AF, Li M, Lee Y, Subramanieapillai M, McIntyre RS (2019) Oral ketamine for depression: a systematic review. J Clin Psychiatry 80:3 Rosenblat JD, Carvalho AF, Li M, Lee Y, Subramanieapillai M, McIntyre RS (2019) Oral ketamine for depression: a systematic review. J Clin Psychiatry 80:3
17.
go back to reference Mathisen LC, Skjelbred P, Skoglund LA, Oye I (1995) Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain 61(2):215–220PubMed Mathisen LC, Skjelbred P, Skoglund LA, Oye I (1995) Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain 61(2):215–220PubMed
18.
go back to reference Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 260(3):1209–1213PubMed Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 260(3):1209–1213PubMed
19.
go back to reference Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7(1):25–38PubMed Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7(1):25–38PubMed
20.
go back to reference Hashimoto K (2019) Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective. Psychiatry Clin Neurosci 73(10):613–627PubMedPubMedCentral Hashimoto K (2019) Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective. Psychiatry Clin Neurosci 73(10):613–627PubMedPubMedCentral
21.
go back to reference Chang L, Zhang K, Pu Y, Qu Y, Wang S-M, Xiong Z et al (2019) Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacol Biochem Behav 181:53–59PubMed Chang L, Zhang K, Pu Y, Qu Y, Wang S-M, Xiong Z et al (2019) Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacol Biochem Behav 181:53–59PubMed
22.
go back to reference Correia-Melo FS, Leal GC, Carvalho MS, Jesus-Nunes AP, Ferreira CBN, Vieira F et al (2018) Comparative study of esketamine and racemic ketamine in treatment-resistant depression: protocol for a non-inferiority clinical trial. Medicine (Baltimore) 97(38):e12414 Correia-Melo FS, Leal GC, Carvalho MS, Jesus-Nunes AP, Ferreira CBN, Vieira F et al (2018) Comparative study of esketamine and racemic ketamine in treatment-resistant depression: protocol for a non-inferiority clinical trial. Medicine (Baltimore) 97(38):e12414
23.
go back to reference Malinovsky JM, Servin F, Cozian A, Lepage JY, Pinaud M (1996) Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children. Br J Anaesth 77(2):203–207PubMed Malinovsky JM, Servin F, Cozian A, Lepage JY, Pinaud M (1996) Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children. Br J Anaesth 77(2):203–207PubMed
24.
go back to reference Cohen ML, Chan SL, Way WL, Trevor AJ (1973) Distribution in the brain and metabolism of ketamine in the rat after intravenous administration. Anesthesiology 39(4):370–376PubMed Cohen ML, Chan SL, Way WL, Trevor AJ (1973) Distribution in the brain and metabolism of ketamine in the rat after intravenous administration. Anesthesiology 39(4):370–376PubMed
25.
go back to reference White PF, Schüttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ (1985) Comparative pharmacology of the ketamine isomers. Br J Anaesth 57(2):197–203PubMed White PF, Schüttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ (1985) Comparative pharmacology of the ketamine isomers. Br J Anaesth 57(2):197–203PubMed
26.
go back to reference Geisslinger G, Hering W, Kamp HD, Vollmers KO (1995) Pharmacokinetics of ketamine enantiomers. Br J Anaesth 75(4):506–507PubMed Geisslinger G, Hering W, Kamp HD, Vollmers KO (1995) Pharmacokinetics of ketamine enantiomers. Br J Anaesth 75(4):506–507PubMed
27.
go back to reference Grant IS, Nimmo WS, McNicol LR, Clements JA (1983) Ketamine disposition in children and adults. Br J Anaesth 55(11):1107–1111PubMed Grant IS, Nimmo WS, McNicol LR, Clements JA (1983) Ketamine disposition in children and adults. Br J Anaesth 55(11):1107–1111PubMed
28.
go back to reference Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 19(6):370–380PubMedPubMedCentral Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 19(6):370–380PubMedPubMedCentral
29.
go back to reference Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P et al (2018) Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev 70(3):621–660PubMedPubMedCentral Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P et al (2018) Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev 70(3):621–660PubMedPubMedCentral
30.
go back to reference Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM (1997) Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol 333(1):99–104PubMed Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM (1997) Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol 333(1):99–104PubMed
31.
go back to reference Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L et al (2013) Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol 698(1–3):228–234PubMed Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L et al (2013) Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol 698(1–3):228–234PubMed
32.
go back to reference Zhang J-C, Li S-X, Hashimoto K (2014) R(−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav 116:137–141PubMed Zhang J-C, Li S-X, Hashimoto K (2014) R(−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav 116:137–141PubMed
33.
go back to reference Yang C, Kobayashi S, Nakao K, Dong C, Han M, Qu Y et al (2018) AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine. Biol Psychiatry 84(8):591–600PubMed Yang C, Kobayashi S, Nakao K, Dong C, Han M, Qu Y et al (2018) AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine. Biol Psychiatry 84(8):591–600PubMed
34.
go back to reference Castrén E, Antila H (2017) Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 22(8):1085–1095PubMedPubMedCentral Castrén E, Antila H (2017) Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 22(8):1085–1095PubMedPubMedCentral
35.
go back to reference Denk MC, Rewerts C, Holsboer F, Erhardt-Lehmann A, Turck CW (2011) Monitoring ketamine treatment response in a depressed patient via peripheral mammalian target of rapamycin activation. Am J Psychiatry 168(7):751–752PubMed Denk MC, Rewerts C, Holsboer F, Erhardt-Lehmann A, Turck CW (2011) Monitoring ketamine treatment response in a depressed patient via peripheral mammalian target of rapamycin activation. Am J Psychiatry 168(7):751–752PubMed
36.
go back to reference Yang C, Zhou Z, Gao Z, Shi J, Yang J-J (2013) Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase-3β, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients. Biol Psychiatry 73(12):e35–e36PubMed Yang C, Zhou Z, Gao Z, Shi J, Yang J-J (2013) Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase-3β, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients. Biol Psychiatry 73(12):e35–e36PubMed
37.
go back to reference Abdallah CG, Averill LA, Gueorguieva R, Goktas S, Purohit P, Ranganathan M, et al. Rapamycin, an immunosuppressant and mTORC1 inhibitor, triples the antidepressant response rate of ketamine at 2 weeks following treatment: a double-blind, placebo-controlled, cross-over, randomized clinical trial. bioRxiv. 2018;500959. Abdallah CG, Averill LA, Gueorguieva R, Goktas S, Purohit P, Ranganathan M, et al. Rapamycin, an immunosuppressant and mTORC1 inhibitor, triples the antidepressant response rate of ketamine at 2 weeks following treatment: a double-blind, placebo-controlled, cross-over, randomized clinical trial. bioRxiv. 2018;500959.
38.
go back to reference Pham TH, Gardier AM (2019) Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 199:58–90PubMed Pham TH, Gardier AM (2019) Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 199:58–90PubMed
39.
go back to reference Hashimoto K, Yang C (2019) Is (S)-norketamine an alternative antidepressant for esketamine? Eur Arch Psychiatry Clin Neurosci 269(7):867–868PubMed Hashimoto K, Yang C (2019) Is (S)-norketamine an alternative antidepressant for esketamine? Eur Arch Psychiatry Clin Neurosci 269(7):867–868PubMed
40.
go back to reference Shirayama Y, Hashimoto K (2018) Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine. Int J Neuropsychopharmacol 21(1):84–88PubMed Shirayama Y, Hashimoto K (2018) Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine. Int J Neuropsychopharmacol 21(1):84–88PubMed
41.
go back to reference Yang C, Qu Y, Abe M, Nozawa D, Chaki S, Hashimoto K (2017) (R)-Ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine. Biol Psychiatry 82(5):e43–e44PubMed Yang C, Qu Y, Abe M, Nozawa D, Chaki S, Hashimoto K (2017) (R)-Ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine. Biol Psychiatry 82(5):e43–e44PubMed
42.
go back to reference Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI et al (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486PubMedPubMedCentral Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI et al (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486PubMedPubMedCentral
43.
go back to reference Pham TH, Defaix C, Xu X, Deng S-X, Fabresse N, Alvarez J-C et al (2018) Common neurotransmission recruited in (R, S)-ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects. Biol Psychiatry 84(1):e3–6PubMed Pham TH, Defaix C, Xu X, Deng S-X, Fabresse N, Alvarez J-C et al (2018) Common neurotransmission recruited in (R, S)-ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects. Biol Psychiatry 84(1):e3–6PubMed
44.
go back to reference Zhu W, Ding Z, Zhang Y, Shi J, Hashimoto K, Lu L (2016) Risks associated with misuse of ketamine as a rapid-acting antidepressant. Neurosci Bull 32(6):557–564PubMedPubMedCentral Zhu W, Ding Z, Zhang Y, Shi J, Hashimoto K, Lu L (2016) Risks associated with misuse of ketamine as a rapid-acting antidepressant. Neurosci Bull 32(6):557–564PubMedPubMedCentral
45.
go back to reference Morgan CJA, Riccelli M, Maitland CH, Curran HV (2004) Long-term effects of ketamine: evidence for a persisting impairment of source memory in recreational users. Drug Alcohol Depend 75(3):301–308PubMed Morgan CJA, Riccelli M, Maitland CH, Curran HV (2004) Long-term effects of ketamine: evidence for a persisting impairment of source memory in recreational users. Drug Alcohol Depend 75(3):301–308PubMed
46.
go back to reference Tsai YC, Kuo H-C (2015) Ketamine cystitis: Its urological impact and management. Urol Sci 26(3):153–157 Tsai YC, Kuo H-C (2015) Ketamine cystitis: Its urological impact and management. Urol Sci 26(3):153–157
47.
go back to reference Ho CCK, Pezhman H, Praveen S, Goh EH, Lee BC, Zulkifli MZ et al (2010) Ketamine-associated ulcerative cystitis: a case report and literature review. Malays J Med Sci 17(2):61–65PubMedPubMedCentral Ho CCK, Pezhman H, Praveen S, Goh EH, Lee BC, Zulkifli MZ et al (2010) Ketamine-associated ulcerative cystitis: a case report and literature review. Malays J Med Sci 17(2):61–65PubMedPubMedCentral
48.
go back to reference United States Food and Drug Administration. United States Food and Drug Administration approved labelling-Spravato. Accessed 8 Sept 2019, pp 1–41. 2019 United States Food and Drug Administration. United States Food and Drug Administration approved labelling-Spravato. Accessed 8 Sept 2019, pp 1–41. 2019
49.
go back to reference Szymkowicz SM, Finnegan N, Dale RM (2013) A 12-month naturalistic observation of three patients receiving repeat intravenous ketamine infusions for their treatment-resistant depression. J Affect Disord 147(1–3):416–420PubMed Szymkowicz SM, Finnegan N, Dale RM (2013) A 12-month naturalistic observation of three patients receiving repeat intravenous ketamine infusions for their treatment-resistant depression. J Affect Disord 147(1–3):416–420PubMed
50.
go back to reference Pretto G, Westphal GA, Silva E (2014) Clonidine for reduction of hemodynamic and psychological effects of S+ ketamine anesthesia for dressing changes in patients with major burns: an RCT. Burns 40(7):1300–1307PubMed Pretto G, Westphal GA, Silva E (2014) Clonidine for reduction of hemodynamic and psychological effects of S+ ketamine anesthesia for dressing changes in patients with major burns: an RCT. Burns 40(7):1300–1307PubMed
51.
go back to reference Cesarovic N, Jirkof P, Rettich A, Nicholls F, Arras M (2012) Combining sevoflurane anesthesia with fentanyl-midazolam or S-ketamine in laboratory mice. J Am Assoc Lab Anim Sci 51(2):209–218PubMedPubMedCentral Cesarovic N, Jirkof P, Rettich A, Nicholls F, Arras M (2012) Combining sevoflurane anesthesia with fentanyl-midazolam or S-ketamine in laboratory mice. J Am Assoc Lab Anim Sci 51(2):209–218PubMedPubMedCentral
52.
go back to reference Adams HA (1997) S-(+)-ketamine. Circulatory interactions during total intravenous anesthesia and analgesia-sedation. Anaesthesist 46(12):1081–1087PubMed Adams HA (1997) S-(+)-ketamine. Circulatory interactions during total intravenous anesthesia and analgesia-sedation. Anaesthesist 46(12):1081–1087PubMed
53.
go back to reference Noppers I, Olofsen E, Niesters M, Aarts L, Mooren R, Dahan A et al (2011) Effect of rifampicin on S-ketamine and S-norketamine plasma concentrations in healthy volunteers after intravenous S-ketamine administration. Anesthesiology 114(6):1435–1445PubMed Noppers I, Olofsen E, Niesters M, Aarts L, Mooren R, Dahan A et al (2011) Effect of rifampicin on S-ketamine and S-norketamine plasma concentrations in healthy volunteers after intravenous S-ketamine administration. Anesthesiology 114(6):1435–1445PubMed
54.
go back to reference Ashraf MW, Peltoniemi MA, Olkkola KT, Neuvonen PJ, Saari TI (2018) Semimechanistic population pharmacokinetic model to predict the drug-drug interaction between S-ketamine and ticlopidine in healthy human volunteers. CPT Pharmacom Syst Pharmacol 7(10):687–697 Ashraf MW, Peltoniemi MA, Olkkola KT, Neuvonen PJ, Saari TI (2018) Semimechanistic population pharmacokinetic model to predict the drug-drug interaction between S-ketamine and ticlopidine in healthy human volunteers. CPT Pharmacom Syst Pharmacol 7(10):687–697
55.
go back to reference Peltoniemi MA, Saari TI, Hagelberg NM, Reponen P, Turpeinen M, Laine K et al (2011) Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clin Pharmacol Ther 90(2):296–302PubMed Peltoniemi MA, Saari TI, Hagelberg NM, Reponen P, Turpeinen M, Laine K et al (2011) Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clin Pharmacol Ther 90(2):296–302PubMed
56.
go back to reference Hagelberg NM, Peltoniemi MA, Saari TI, Kurkinen KJ, Laine K, Neuvonen PJ et al (2010) Clarithromycin, a potent inhibitor of CYP3A, greatly increases exposure to oral S-ketamine. Eur J Pain 14(6):625–629PubMed Hagelberg NM, Peltoniemi MA, Saari TI, Kurkinen KJ, Laine K, Neuvonen PJ et al (2010) Clarithromycin, a potent inhibitor of CYP3A, greatly increases exposure to oral S-ketamine. Eur J Pain 14(6):625–629PubMed
57.
go back to reference Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2012) St John’s wort greatly decreases the plasma concentrations of oral S-ketamine. Fundam Clin Pharmacol 26(6):743–750PubMed Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2012) St John’s wort greatly decreases the plasma concentrations of oral S-ketamine. Fundam Clin Pharmacol 26(6):743–750PubMed
58.
go back to reference Li C-T, Yang K-C, Lin W-C (2019) Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front Psychiatry 2019:9 Li C-T, Yang K-C, Lin W-C (2019) Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front Psychiatry 2019:9
Metadata
Title
Esketamine: a glimmer of hope in treatment-resistant depression
Authors
Upinder Kaur
Bhairav Kumar Pathak
Amit Singh
Sankha Shubhra Chakrabarti
Publication date
01-04-2021
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience / Issue 3/2021
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-019-01084-z

Other articles of this Issue 3/2021

European Archives of Psychiatry and Clinical Neuroscience 3/2021 Go to the issue