Skip to main content
Top
Published in: Acta Neuropathologica 4/2012

Open Access 01-10-2012 | Original Paper

Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus

Authors: Ruth Roales-Buján, Patricia Páez, Montserrat Guerra, Sara Rodríguez, Karin Vío, Ailec Ho-Plagaro, María García-Bonilla, Luis-Manuel Rodríguez-Pérez, María-Dolores Domínguez-Pinos, Esteban-Martín Rodríguez, José-Manuel Pérez-Fígares, Antonio-Jesús Jiménez

Published in: Acta Neuropathologica | Issue 4/2012

Login to get access

Abstract

Hydrocephalic hyh mutant mice undergo a programmed loss of the neuroepithelium/ependyma followed by a reaction of periventricular astrocytes, which form a new cell layer covering the denuded ventricular surface. We present a comparative morphological and functional study of the newly formed layer of astrocytes and the multiciliated ependyma of hyh mice. Transmission electron microscopy, immunocytochemistry for junction proteins (N-cadherin, connexin 43) and proteins involved in permeability (aquaporin 4) and endocytosis (caveolin-1, EEA1) were used. Horseradish peroxidase (HRP) and lanthanum nitrate were used to trace the intracellular and paracellular transport routes. The astrocyte layer shares several cytological features with the normal multiciliated ependyma, such as numerous microvilli projected into the ventricle, extensive cell–cell interdigitations and connexin 43-based gap junctions, suggesting that these astrocytes are coupled to play an unknown function as a cell layer. The ependyma and the astrocyte layers also share transport properties: (1) high expression of aquaporin 4, caveolin-1 and the endosome marker EEA1; (2) internalization into endocytic vesicles and early endosomes of HRP injected into the ventricle; (3) and a similar paracellular route of molecules moving between CSF, the subependymal neuropile and the pericapillary space, as shown by lanthanum nitrate and HRP. A parallel analysis performed in human hydrocephalic foetuses indicated that a similar phenomenon would occur in humans. We suggest that in foetal-onset hydrocephalus, the astrocyte assembly at the denuded ventricular walls functions as a CSF–brain barrier involved in water and solute transport, thus contributing to re-establish lost functions at the brain parenchyma–CSF interphase.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abouhamed M, Grobe K, San IV et al (2009) Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol Biol Cell 20:5074–5085PubMedCrossRef Abouhamed M, Grobe K, San IV et al (2009) Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol Biol Cell 20:5074–5085PubMedCrossRef
2.
go back to reference Baas D, Meiniel A, Benadiba C et al (2006) A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 24:1020–1030PubMedCrossRef Baas D, Meiniel A, Benadiba C et al (2006) A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 24:1020–1030PubMedCrossRef
3.
go back to reference Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132:5329–5339PubMedCrossRef Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132:5329–5339PubMedCrossRef
4.
go back to reference Bátiz LF, Jiménez A, Guerra M et al (2011) New ependymal cells are originated postnatally in discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus. Acta Neuropathol 121:721–735PubMedCrossRef Bátiz LF, Jiménez A, Guerra M et al (2011) New ependymal cells are originated postnatally in discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus. Acta Neuropathol 121:721–735PubMedCrossRef
5.
go back to reference Bátiz LF, Roales-Buján R, Rodríguez-Pérez LM et al (2009) A simple PCR-based genotyping method for M105I mutation of alpha-SNAP enhances the study of early pathological changes in hyh phenotype. Mol Cell Probes 23:281–290PubMedCrossRef Bátiz LF, Roales-Buján R, Rodríguez-Pérez LM et al (2009) A simple PCR-based genotyping method for M105I mutation of alpha-SNAP enhances the study of early pathological changes in hyh phenotype. Mol Cell Probes 23:281–290PubMedCrossRef
6.
go back to reference Bouillé C, Mesnil M, Barriere H, Gabrion J (1991) Gap junctional intercellular communication between cultured ependymal cells, revealed by lucifer yellow CH transfer and freeze-fracture. Glia 4:25–36PubMedCrossRef Bouillé C, Mesnil M, Barriere H, Gabrion J (1991) Gap junctional intercellular communication between cultured ependymal cells, revealed by lucifer yellow CH transfer and freeze-fracture. Glia 4:25–36PubMedCrossRef
7.
go back to reference Bovolenta P, Wandosell F, Nieto-Sampedro M (1992) CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth. Prog Brain Res 94:367–379PubMedCrossRef Bovolenta P, Wandosell F, Nieto-Sampedro M (1992) CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth. Prog Brain Res 94:367–379PubMedCrossRef
8.
go back to reference Brightman MW (1965) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J Cell Biol 26:99–123PubMedCrossRef Brightman MW (1965) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J Cell Biol 26:99–123PubMedCrossRef
9.
go back to reference Brightman MW (1965) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat 117:193–220PubMedCrossRef Brightman MW (1965) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat 117:193–220PubMedCrossRef
10.
go back to reference Brightman MW (1968) The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. Prog Brain Res 29:19–40PubMedCrossRef Brightman MW (1968) The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. Prog Brain Res 29:19–40PubMedCrossRef
11.
go back to reference Bronson RT, Lane PW (1990) Hydrocephalus with hop gait (hyh): a new mutation on chromosome 7 in the mouse. Dev Brain Res 54:131–136CrossRef Bronson RT, Lane PW (1990) Hydrocephalus with hop gait (hyh): a new mutation on chromosome 7 in the mouse. Dev Brain Res 54:131–136CrossRef
12.
go back to reference Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41:2–13PubMedCrossRef Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41:2–13PubMedCrossRef
13.
go back to reference Chae TH, Kim S, Marz KE et al (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270PubMedCrossRef Chae TH, Kim S, Marz KE et al (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270PubMedCrossRef
14.
15.
go back to reference Del Bigio MR (2000) Calcium-mediated proteolytic damage in white matter of hydrocephalic rats? J Neuropathol Exp Neurol 59:946–954PubMed Del Bigio MR (2000) Calcium-mediated proteolytic damage in white matter of hydrocephalic rats? J Neuropathol Exp Neurol 59:946–954PubMed
16.
go back to reference Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346PubMedCrossRef Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346PubMedCrossRef
17.
go back to reference Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154:157–169PubMedCrossRef Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154:157–169PubMedCrossRef
18.
go back to reference Domínguez-Pinos MD, Páez P, Jiménez AJ et al (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604PubMed Domínguez-Pinos MD, Páez P, Jiménez AJ et al (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604PubMed
19.
go back to reference Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes: implications for their role in neurologic disease. Neuroscience 54:15–36PubMedCrossRef Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes: implications for their role in neurologic disease. Neuroscience 54:15–36PubMedCrossRef
20.
go back to reference Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and edothelial cell function. Arterioscler Thromb Vasc Biol 23:1161–1168PubMedCrossRef Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and edothelial cell function. Arterioscler Thromb Vasc Biol 23:1161–1168PubMedCrossRef
21.
go back to reference Gabrion JB, Herbuté S, Bouillé C et al (1998) Ependymal and choroidal cells in culture: characterization and functional differentiation. Microsc Res Tech 41:124–157PubMedCrossRef Gabrion JB, Herbuté S, Bouillé C et al (1998) Ependymal and choroidal cells in culture: characterization and functional differentiation. Microsc Res Tech 41:124–157PubMedCrossRef
22.
go back to reference Giaume C, Kirchhoff F, Matute C et al (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324–1335PubMedCrossRef Giaume C, Kirchhoff F, Matute C et al (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324–1335PubMedCrossRef
23.
go back to reference Gosens R, Mutawe M, Martin S et al (2008) Caveolae and caveolins in the respiratory system. Curr Mol Med 8:741–753PubMedCrossRef Gosens R, Mutawe M, Martin S et al (2008) Caveolae and caveolins in the respiratory system. Curr Mol Med 8:741–753PubMedCrossRef
24.
25.
go back to reference Hong HK, Chakravarti A, Takahashi JS (2004) The gene for soluble N-ethylmaleimide sensitive factor attachment protein alpha is mutated in hydrocephaly with hop gait (hyh) mice. Proc Natl Acad Sci USA 101(6):1748–1753PubMedCrossRef Hong HK, Chakravarti A, Takahashi JS (2004) The gene for soluble N-ethylmaleimide sensitive factor attachment protein alpha is mutated in hydrocephaly with hop gait (hyh) mice. Proc Natl Acad Sci USA 101(6):1748–1753PubMedCrossRef
26.
go back to reference Ibañez-Tallon I, Pagenstecher A, Fliegauf M et al (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13:2133–2141PubMedCrossRef Ibañez-Tallon I, Pagenstecher A, Fliegauf M et al (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13:2133–2141PubMedCrossRef
27.
go back to reference Jäderstad J, Brismar H, Herlenius E (2010) Hypoxic preconditioning increases gap-junctional graft and host communication. NeuroReport 21:1126–1132PubMedCrossRef Jäderstad J, Brismar H, Herlenius E (2010) Hypoxic preconditioning increases gap-junctional graft and host communication. NeuroReport 21:1126–1132PubMedCrossRef
28.
go back to reference Jarvis CR, Andrew RD (1988) Correlated electrophysiology and morphology of the ependyma in rat hypothalamus. J Neurosci 8:3691–3702PubMed Jarvis CR, Andrew RD (1988) Correlated electrophysiology and morphology of the ependyma in rat hypothalamus. J Neurosci 8:3691–3702PubMed
29.
go back to reference Jiménez AJ, García-Verdugo JM, González CA et al (2009) Disruption of the neurogenic niche in the subventricular zone of postnatal hydrocephalic hyh mice. J Neuropathol Exp Neurol 68:1006–1020PubMedCrossRef Jiménez AJ, García-Verdugo JM, González CA et al (2009) Disruption of the neurogenic niche in the subventricular zone of postnatal hydrocephalic hyh mice. J Neuropathol Exp Neurol 68:1006–1020PubMedCrossRef
30.
go back to reference Jiménez AJ, Tomé M, Páez P et al (2001) A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol 60:1105–1119PubMed Jiménez AJ, Tomé M, Páez P et al (2001) A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol 60:1105–1119PubMed
31.
go back to reference Johanson CE, Duncan JA 3rd, Klinge PM et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10PubMedCrossRef Johanson CE, Duncan JA 3rd, Klinge PM et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10PubMedCrossRef
32.
go back to reference Jovic M, Sharma M, Rahajeng J, Caplan S (2010) The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 25:99–112PubMed Jovic M, Sharma M, Rahajeng J, Caplan S (2010) The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 25:99–112PubMed
33.
go back to reference Lin JH, Weigel H, Cotrina ML et al (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500PubMedCrossRef Lin JH, Weigel H, Cotrina ML et al (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500PubMedCrossRef
34.
go back to reference Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23:2929–2936PubMedCrossRef Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23:2929–2936PubMedCrossRef
35.
go back to reference McAllister JP, Miller JM (2010) Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 7:7PubMedCrossRef McAllister JP, Miller JM (2010) Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 7:7PubMedCrossRef
36.
go back to reference Miller JM, McAllister JP (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5PubMedCrossRef Miller JM, McAllister JP (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5PubMedCrossRef
37.
go back to reference Nakase T, Yoshida Y, Nagata K (2006) Enhanced connexin 43 immunoreactivity in penumbral areas in the human brain following ischemia. Glia 54:369–375PubMedCrossRef Nakase T, Yoshida Y, Nagata K (2006) Enhanced connexin 43 immunoreactivity in penumbral areas in the human brain following ischemia. Glia 54:369–375PubMedCrossRef
38.
go back to reference Nase G, Helm PJ, Enger R, Ottersen OP (2008) Water entry into astrocytes during brain edema formation. Glia 56:895–902PubMedCrossRef Nase G, Helm PJ, Enger R, Ottersen OP (2008) Water entry into astrocytes during brain edema formation. Glia 56:895–902PubMedCrossRef
39.
go back to reference Nilsson H, Dragomir A, Ahlander A et al (2006) A modified technique for the impregnation of lanthanum tracer to study the integrity of tight junctions on cells grown on a permeable substrate. Microsc Res Tech 69:776–783PubMedCrossRef Nilsson H, Dragomir A, Ahlander A et al (2006) A modified technique for the impregnation of lanthanum tracer to study the integrity of tight junctions on cells grown on a permeable substrate. Microsc Res Tech 69:776–783PubMedCrossRef
40.
go back to reference Owler BK, Pitham T, Wang D (2010) Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res 7:15PubMedCrossRef Owler BK, Pitham T, Wang D (2010) Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res 7:15PubMedCrossRef
41.
go back to reference Páez P, Bátiz LF, Roales-Buján R et al (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66:1082–1092PubMedCrossRef Páez P, Bátiz LF, Roales-Buján R et al (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66:1082–1092PubMedCrossRef
42.
go back to reference Paul L, Madan M, Rammling M et al (2011) Expression of aquaporin 1 and 4 in congenital hydrocephalus rat model. Neurosurgery 68:462–473PubMedCrossRef Paul L, Madan M, Rammling M et al (2011) Expression of aquaporin 1 and 4 in congenital hydrocephalus rat model. Neurosurgery 68:462–473PubMedCrossRef
43.
go back to reference Pérez-Fígares JM, Jiménez AJ, Rodríguez EM et al (2001) Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc Res Tech 52:591–607PubMedCrossRef Pérez-Fígares JM, Jiménez AJ, Rodríguez EM et al (2001) Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc Res Tech 52:591–607PubMedCrossRef
44.
go back to reference Peruzzo B, Pastor FE, Blázquez JL et al (2004) Polarized endocytosis and transcytosis in the hypothalamic tanycytes of the rat. Cell Tissue Res 317:147–164PubMedCrossRef Peruzzo B, Pastor FE, Blázquez JL et al (2004) Polarized endocytosis and transcytosis in the hypothalamic tanycytes of the rat. Cell Tissue Res 317:147–164PubMedCrossRef
45.
go back to reference Ransom BR, Ye ZC (2005) Gap junctions and hemichannels. In: Ketternmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 177–189 Ransom BR, Ye ZC (2005) Gap junctions and hemichannels. In: Ketternmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 177–189
46.
go back to reference Rash JE, Yasumura T, Hudson CS et al (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95:11981–11986PubMedCrossRef Rash JE, Yasumura T, Hudson CS et al (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95:11981–11986PubMedCrossRef
47.
go back to reference Renault-Mihara F, Okada S, Shibata S et al (2008) Spinal cord injury: emerging beneficial role of reactive astrocytes migration. Int J Biochem Cell Biol 40:1649–1653PubMedCrossRef Renault-Mihara F, Okada S, Shibata S et al (2008) Spinal cord injury: emerging beneficial role of reactive astrocytes migration. Int J Biochem Cell Biol 40:1649–1653PubMedCrossRef
48.
go back to reference Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33:C7–C12PubMedCrossRef Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33:C7–C12PubMedCrossRef
49.
go back to reference Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577PubMedCrossRef Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577PubMedCrossRef
50.
go back to reference Rodríguez EM, Blázquez JL, Guerra M (2010) The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: The former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides 31:757–776PubMedCrossRef Rodríguez EM, Blázquez JL, Guerra M (2010) The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: The former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides 31:757–776PubMedCrossRef
51.
go back to reference Rouach N, Avignone E, Même W et al (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475PubMedCrossRef Rouach N, Avignone E, Même W et al (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475PubMedCrossRef
52.
go back to reference Sakakibara S, Nakamura Y, Yoshida T et al (2002) RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci USA 99:15194–15199PubMedCrossRef Sakakibara S, Nakamura Y, Yoshida T et al (2002) RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci USA 99:15194–15199PubMedCrossRef
53.
54.
go back to reference Shen XQ, Miyajima M, Ogino I et al (2006) Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg 105:459–464PubMed Shen XQ, Miyajima M, Ogino I et al (2006) Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg 105:459–464PubMed
55.
go back to reference Sival DA, Guerra M, den Dunnen WF et al (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179PubMedCrossRef Sival DA, Guerra M, den Dunnen WF et al (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179PubMedCrossRef
56.
go back to reference Skjolding AD, Rowland IJ, Søgaard LV et al (2010) Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Res 7:20PubMedCrossRef Skjolding AD, Rowland IJ, Søgaard LV et al (2010) Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Res 7:20PubMedCrossRef
57.
go back to reference Socci DJ, Bjugstad KB, Jones HC et al (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109–117PubMedCrossRef Socci DJ, Bjugstad KB, Jones HC et al (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109–117PubMedCrossRef
58.
go back to reference Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407PubMedCrossRef Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407PubMedCrossRef
59.
60.
go back to reference Talhouk RS, Zeinieh MP, Mikati MA, El-Sabban ME (2008) Gap junctional intercellular communication in hypoxia–ischemia-induced neuronal injury. Prog Neurobiol 84:57–76PubMedCrossRef Talhouk RS, Zeinieh MP, Mikati MA, El-Sabban ME (2008) Gap junctional intercellular communication in hypoxia–ischemia-induced neuronal injury. Prog Neurobiol 84:57–76PubMedCrossRef
61.
go back to reference Tissir F, Qu Y, Montcouquiol M et al (2010) Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci 13:700–707PubMedCrossRef Tissir F, Qu Y, Montcouquiol M et al (2010) Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci 13:700–707PubMedCrossRef
62.
go back to reference Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932PubMed Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932PubMed
63.
go back to reference Venero JL, Vizuete ML, Machado A, Cano J (2001) Aquaporins in the central nervous system. Prog Neurobiol 63:321–336PubMedCrossRef Venero JL, Vizuete ML, Machado A, Cano J (2001) Aquaporins in the central nervous system. Prog Neurobiol 63:321–336PubMedCrossRef
64.
go back to reference Vizuete ML, Venero JL, Vargas C et al (1999) Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurobiol Dis 6:245–258PubMedCrossRef Vizuete ML, Venero JL, Vargas C et al (1999) Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurobiol Dis 6:245–258PubMedCrossRef
65.
go back to reference Wagner C, Batiz LF, Rodríguez S et al (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040PubMed Wagner C, Batiz LF, Rodríguez S et al (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040PubMed
66.
go back to reference Wang HW, Amin MS, El-Shahat E et al (2010) Effects of central sodium on epithelial sodium channels in rat brain. Am J Physiol Regul Integr Comp Physiol 299:R222–R233PubMedCrossRef Wang HW, Amin MS, El-Shahat E et al (2010) Effects of central sodium on epithelial sodium channels in rat brain. Am J Physiol Regul Integr Comp Physiol 299:R222–R233PubMedCrossRef
67.
go back to reference Weisz OA, Rodriguez-Boulan E (2009) Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 122:4253–4266PubMedCrossRef Weisz OA, Rodriguez-Boulan E (2009) Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 122:4253–4266PubMedCrossRef
68.
go back to reference Worthington WC Jr, Cathcart RS (1963) Ependymal cilia: distribution and activity in the adult human brain. Science 139:221–222PubMedCrossRef Worthington WC Jr, Cathcart RS (1963) Ependymal cilia: distribution and activity in the adult human brain. Science 139:221–222PubMedCrossRef
69.
go back to reference Yamadori T, Nara K (1979) The directions of ciliary beat on the wall of the lateral ventricle and the currents of the cerebrospinal fluid in the brain ventricles. Scan Electron Microsc 3:335–340PubMed Yamadori T, Nara K (1979) The directions of ciliary beat on the wall of the lateral ventricle and the currents of the cerebrospinal fluid in the brain ventricles. Scan Electron Microsc 3:335–340PubMed
Metadata
Title
Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus
Authors
Ruth Roales-Buján
Patricia Páez
Montserrat Guerra
Sara Rodríguez
Karin Vío
Ailec Ho-Plagaro
María García-Bonilla
Luis-Manuel Rodríguez-Pérez
María-Dolores Domínguez-Pinos
Esteban-Martín Rodríguez
José-Manuel Pérez-Fígares
Antonio-Jesús Jiménez
Publication date
01-10-2012
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 4/2012
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-0992-6

Other articles of this Issue 4/2012

Acta Neuropathologica 4/2012 Go to the issue