Skip to main content
Top
Published in: Basic Research in Cardiology 1/2013

01-01-2013 | Original Contribution

Inhibition of CTRP9, a novel and cardiac-abundantly expressed cell survival molecule, by TNFα-initiated oxidative signaling contributes to exacerbated cardiac injury in diabetic mice

Authors: Hui Su, Yuexing Yuan, Xiao-Ming Wang, Wayne Bond Lau, Yajing Wang, Xiaoliang Wang, Erhe Gao, Walter J. Koch, Xin-Liang Ma

Published in: Basic Research in Cardiology | Issue 1/2013

Login to get access

Abstract

Recently identified as adiponectin (APN) paralogs, C1q/TNF-related proteins (CTRPs) share similar metabolic regulatory functions as APN. The current study determined cardiac expression of CTRPs, their potential cardioprotective function, and investigated whether and how diabetes may regulate cardiac CTRP expression. Several CTRPs are expressed in the heart at levels significantly greater than APN. Most notably, cardiac expression of CTRP9, the closest paralog of APN, exceeds APN by >100-fold. Cardiac CTRP9 expression was significantly reduced in high-fat diet-induced diabetic mice. In H9c2 cells, tumor necrosis factor-alpha (TNF-α) strongly inhibited CTRP9 expression (>60 %), and significantly reduced peroxisome proliferator activated receptor-gamma (PPARγ), a known transcription factor promoting adiponectin expression. The inhibitory effect of TNF-α on PPARγ and CTRP9 was reversed by Tiron or rosiglitazone. CTRP9 knockdown significantly enhanced, whereas CTRP9 overexpression significantly attenuated simulated ischemia/reperfusion injury in H9c2 cells. In vivo CTRP9 administration to diabetic mice significantly attenuated NADPH oxidase expression and superoxide generation, reduced infarct size, and improved cardiac function. To the best of our knowledge, this is the first study providing evidence that downregulation of CTRP9, an abundantly expressed and novel cell survival molecule in the heart, by TNF-α-initiated oxidative PPARγ suppression contributes to exacerbated diabetic cardiac injury. Preservation of CTRP9 expression or augmentation of CTRP9-initiated signaling mechanisms may be the potential avenues for ameliorating ischemic diabetic cardiac injury.
Literature
2.
go back to reference Canton M, Skyschally A, Menabò R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di Lisa F, Heusch G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Euro Heart J 27:875–881. doi:10.1093/eurheartj/ehi751 CrossRef Canton M, Skyschally A, Menabò R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di Lisa F, Heusch G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Euro Heart J 27:875–881. doi:10.​1093/​eurheartj/​ehi751 CrossRef
3.
go back to reference Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, Ma XL (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497–1502. doi:10.1161/01.CIR.0000012529.00367.0F PubMedCrossRef Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, Ma XL (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497–1502. doi:10.​1161/​01.​CIR.​0000012529.​00367.​0F PubMedCrossRef
4.
go back to reference He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 100:15712–15717. doi:10.1073/pnas.2536828100 PubMedCrossRef He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 100:15712–15717. doi:10.​1073/​pnas.​2536828100 PubMedCrossRef
5.
go back to reference Iaconetti C, Polimeni A, Sorrentino S, Sabatino J, Pironti G, Esposito G, Curcio A, Indolfi C (2012) Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 107:296. doi:10.1007/s00395-012-0296-y PubMedCrossRef Iaconetti C, Polimeni A, Sorrentino S, Sabatino J, Pironti G, Esposito G, Curcio A, Indolfi C (2012) Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 107:296. doi:10.​1007/​s00395-012-0296-y PubMedCrossRef
6.
go back to reference Kambara T, Ohashi K, Shibata R, Ogura Y, Maruyama S, Enomoto T, Uemura Y, Shimizu Y, Yuasa D, Matsuo K, Miyabe M, Kataoka Y, Murohara T, Ouchi N (2012) CTRP9 protects against myocardial injury following ischemia-reperfusion through AMPK-dependent mechanism. J Biol Chem 287:18965–18973. doi:10.1074/jbc.M112.357939 PubMedCrossRef Kambara T, Ohashi K, Shibata R, Ogura Y, Maruyama S, Enomoto T, Uemura Y, Shimizu Y, Yuasa D, Matsuo K, Miyabe M, Kataoka Y, Murohara T, Ouchi N (2012) CTRP9 protects against myocardial injury following ischemia-reperfusion through AMPK-dependent mechanism. J Biol Chem 287:18965–18973. doi:10.​1074/​jbc.​M112.​357939 PubMedCrossRef
8.
go back to reference Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277:25863–25866. doi:10.1074/jbc.C200251200 PubMedCrossRef Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277:25863–25866. doi:10.​1074/​jbc.​C200251200 PubMedCrossRef
9.
10.
go back to reference Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, Paul A, Chan L (2002) Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 277:34658–34661PubMedCrossRef Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, Paul A, Chan L (2002) Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 277:34658–34661PubMedCrossRef
11.
go back to reference Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737. doi:10.1038/nm724 PubMedCrossRef Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737. doi:10.​1038/​nm724 PubMedCrossRef
16.
go back to reference Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11:1096–1103. doi:10.1038/nm1295 PubMedCrossRef Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11:1096–1103. doi:10.​1038/​nm1295 PubMedCrossRef
17.
go back to reference Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423. doi:10.1161/01.CIR.0000055318.09997.1F PubMedCrossRef Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423. doi:10.​1161/​01.​CIR.​0000055318.​09997.​1F PubMedCrossRef
18.
go back to reference Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, Lopez BL, Koch W, Chan L, Goldstein BJ, Ma XL (2007) Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115:1408–1416. doi:10.1161/CIRCULATIONAHA.106.666941 PubMedCrossRef Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, Lopez BL, Koch W, Chan L, Goldstein BJ, Ma XL (2007) Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115:1408–1416. doi:10.​1161/​CIRCULATIONAHA.​106.​666941 PubMedCrossRef
19.
go back to reference Wang Y, Gao E, Tao L, Lau WB, Yuan Y, Goldstein BJ, Lopez BL, Christopher TA, Tian R, Koch W, Ma XL (2009) AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 119:835–844. doi:10.1161/CIRCULATIONAHA.108.815043 PubMedCrossRef Wang Y, Gao E, Tao L, Lau WB, Yuan Y, Goldstein BJ, Lopez BL, Christopher TA, Tian R, Koch W, Ma XL (2009) AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 119:835–844. doi:10.​1161/​CIRCULATIONAHA.​108.​815043 PubMedCrossRef
20.
21.
go back to reference Wei Z, Peterson JM, Wong GW (2011) Metabolic regulation by C1q/TNF-related protein-13 (CTRP13): activation OF AMP-activated protein kinase and suppression of fatty acid-induced JNK signaling. J Biol Chem 286:15652–15665. doi:10.1074/jbc.M110.201087 PubMedCrossRef Wei Z, Peterson JM, Wong GW (2011) Metabolic regulation by C1q/TNF-related protein-13 (CTRP13): activation OF AMP-activated protein kinase and suppression of fatty acid-induced JNK signaling. J Biol Chem 286:15652–15665. doi:10.​1074/​jbc.​M110.​201087 PubMedCrossRef
22.
go back to reference Wong GW, Krawczyk SA, Kitidis-mitrokostas C, Ge G, Spooner E, Hug C, Gimeno R, Lodish HF (2009) Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J 23:241–258. doi:10.1096/fj.08-114991 PubMedCrossRef Wong GW, Krawczyk SA, Kitidis-mitrokostas C, Ge G, Spooner E, Hug C, Gimeno R, Lodish HF (2009) Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J 23:241–258. doi:10.​1096/​fj.​08-114991 PubMedCrossRef
23.
go back to reference Wong GW, Krawczyk SA, Kitidis-mitrokostas C, Revett T, Gimeno R, Lodish HF (2008) Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-γ agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J 416:161–177. doi:10.1042/BJ20081240 PubMedCrossRef Wong GW, Krawczyk SA, Kitidis-mitrokostas C, Revett T, Gimeno R, Lodish HF (2008) Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-γ agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J 416:161–177. doi:10.​1042/​BJ20081240 PubMedCrossRef
25.
go back to reference Yi W, Sun Y, Gao E, Wei X, Lau WB, Zheng Q, Wang Y, Yuan Y, Wang X, Tao L, Li R, Koch W, Ma XL (2011) Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms. Antioxid Redox Signal 15:1779–1788. doi:10.1089/ars.2010.3722 PubMedCrossRef Yi W, Sun Y, Gao E, Wei X, Lau WB, Zheng Q, Wang Y, Yuan Y, Wang X, Tao L, Li R, Koch W, Ma XL (2011) Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms. Antioxid Redox Signal 15:1779–1788. doi:10.​1089/​ars.​2010.​3722 PubMedCrossRef
26.
go back to reference Zheng Q, Yuan Y, Yi W, Lau WB, Wang Y, Wang X, Sun Y, Lopez BL, Christopher TA, Peterson JM, Wong GW, Yu S, Yi D, Ma XL (2011) C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway. Arterioscler Thromb Vasc Biol 31:2616–2623. doi:10.1161/ATVBAHA.111.231050 PubMedCrossRef Zheng Q, Yuan Y, Yi W, Lau WB, Wang Y, Wang X, Sun Y, Lopez BL, Christopher TA, Peterson JM, Wong GW, Yu S, Yi D, Ma XL (2011) C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway. Arterioscler Thromb Vasc Biol 31:2616–2623. doi:10.​1161/​ATVBAHA.​111.​231050 PubMedCrossRef
Metadata
Title
Inhibition of CTRP9, a novel and cardiac-abundantly expressed cell survival molecule, by TNFα-initiated oxidative signaling contributes to exacerbated cardiac injury in diabetic mice
Authors
Hui Su
Yuexing Yuan
Xiao-Ming Wang
Wayne Bond Lau
Yajing Wang
Xiaoliang Wang
Erhe Gao
Walter J. Koch
Xin-Liang Ma
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Basic Research in Cardiology / Issue 1/2013
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-012-0315-z

Other articles of this Issue 1/2013

Basic Research in Cardiology 1/2013 Go to the issue