Skip to main content
Top
Published in: Clinical Research in Cardiology 2/2014

01-02-2014 | Original Paper

Connective tissue growth factor (CTGF/CCN2): diagnostic and prognostic value in acute heart failure

Authors: Michael Behnes, Martina Brueckmann, Siegfried Lang, Christel Weiß, Parviz Ahmad-Nejad, Michael Neumaier, Martin Borggrefe, Ursula Hoffmann

Published in: Clinical Research in Cardiology | Issue 2/2014

Login to get access

Abstract

Background

As a mediator of ECM homeostasis, connective tissue growth factor (CTGF) appears to be involved in adverse structural remodeling processes in the heart. However, the diagnostic and prognostic value of CTGF levels in acute heart failure (AHF) in addition to natriuretic peptide testing has not yet been evaluated.

Methods and results

A total of 212 patients presenting with acute dyspnea and/or peripheral edema to the Emergency Department were evaluated. CTGF and NT-proBNP plasma levels were measured at the initial presentation. All patients were followed up to 1 and 5 years. The first endpoint tested was the diagnostic non-inferiority of combined CTGF plus NT-proBNP compared to NT-proBNP alone for AHF diagnosis. Afterwards, the additional diagnostic value of CTGF plus NT-proBNP was tested. CTGF levels were higher in NYHA class III/IV and AHA/ACC class C/D patients compared to lower class patients (p = 0.04). Patients with HFREF revealed highest CTGF levels (median 93.3 pg/ml, IQR 18.2–972 pg/ml, n = 48) compared to patients with a normal heart function (i.e., without HFREF and HFPEF) (median 25.9, IQR <1–82.2 pg/ml, n = 37) (p < 0.05), followed by patients with HFPEF (median 82.2 pg/ml, IQR 11.5–447 pg/ml, n = 32) as assessed by echocardiography. Finally, CTGF levels were higher in patients with AHF (median 77.3 pg/ml, IQR 22.5–1012 pg/ml, n = 66) compared to those without (p = 0.002). CTGF plus NT-proBNP was non-inferior to NT-proBNP testing alone for AHF diagnosis (AUC difference 0.01, p > 0.05). CTGF plus NT-proBNP improved the diagnostic capacity for AHF (accuracy 82 %, specificity 83 %, positive predictive value 66 %, net reclassification improvement +0.11) compared to NT-proBNP alone (p = 0.0001). CTGF levels were not able to differentiate prognostic outcomes after 1 and 5 years.

Conclusions

Additional CTGF measurements might lead to a better discrimination of higher functional and structural heart failure stages and might identify patients of an increased risk for an acute cardiac decompensation.
Literature
1.
go back to reference McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847PubMedCrossRef McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847PubMedCrossRef
2.
go back to reference Maisel A, Mueller C, Adams K Jr, Anker SD, Aspromonte N, Cleland JG et al (2008) State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail 10:824–839PubMedCrossRef Maisel A, Mueller C, Adams K Jr, Anker SD, Aspromonte N, Cleland JG et al (2008) State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail 10:824–839PubMedCrossRef
3.
go back to reference Metra M, Bettari L, Pagani F, Lazzarini V, Lombardi C, Carubelli V et al (2012) Troponin T levels in patients with acute heart failure: clinical and prognostic significance of their detection and release during hospitalisation. Clin Res Cardiol 101:663–672PubMedCrossRef Metra M, Bettari L, Pagani F, Lazzarini V, Lombardi C, Carubelli V et al (2012) Troponin T levels in patients with acute heart failure: clinical and prognostic significance of their detection and release during hospitalisation. Clin Res Cardiol 101:663–672PubMedCrossRef
4.
go back to reference Behnes M, Brueckmann M, Ahmad-Nejad P, Lang S, Wolpert C, Elmas E et al (2009) Diagnostic performance and cost effectiveness of measurements of plasma N-terminal pro brain natriuretic peptide in patients presenting with acute dyspnea or peripheral edema. Int J Cardiol 135:165–174PubMedCrossRef Behnes M, Brueckmann M, Ahmad-Nejad P, Lang S, Wolpert C, Elmas E et al (2009) Diagnostic performance and cost effectiveness of measurements of plasma N-terminal pro brain natriuretic peptide in patients presenting with acute dyspnea or peripheral edema. Int J Cardiol 135:165–174PubMedCrossRef
5.
go back to reference Lok DJ, Lok SI, Bruggink-Andre de la Porte PW, Badings E, Lipsic E, Van Wijngaarden J et al (2013) Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol 102:103–110PubMedCrossRef Lok DJ, Lok SI, Bruggink-Andre de la Porte PW, Badings E, Lipsic E, Van Wijngaarden J et al (2013) Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol 102:103–110PubMedCrossRef
6.
go back to reference Neuberger HR, Cacciatore A, Reil JC, Graber S, Schafers HJ, Ukena C et al (2012) Procollagen propeptides: serum markers for atrial fibrosis? Clin Res Cardiol 101:655–661PubMedCrossRef Neuberger HR, Cacciatore A, Reil JC, Graber S, Schafers HJ, Ukena C et al (2012) Procollagen propeptides: serum markers for atrial fibrosis? Clin Res Cardiol 101:655–661PubMedCrossRef
8.
go back to reference Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367PubMedCrossRef Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367PubMedCrossRef
9.
10.
go back to reference Sun Y, Weber KT (1998) Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones. Ann Med 30(Suppl 1):3–8PubMed Sun Y, Weber KT (1998) Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones. Ann Med 30(Suppl 1):3–8PubMed
11.
go back to reference Weber KT (1997) Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065–4082PubMedCrossRef Weber KT (1997) Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065–4082PubMedCrossRef
12.
go back to reference Behnes M, Brueckmann M, Lang S, Espeter F, Weiss C, Neumaier M, et al. Diagnostic and prognostic value of osteopontin in patients with acute congestive heart failure. Eur J Heart Fail 2013. [Epub ahead of print] Behnes M, Brueckmann M, Lang S, Espeter F, Weiss C, Neumaier M, et al. Diagnostic and prognostic value of osteopontin in patients with acute congestive heart failure. Eur J Heart Fail 2013. [Epub ahead of print]
13.
go back to reference Behnes M, Hoffmann U, Lang S, Weiss C, Ahmad-Nejad P, Neumaier M et al (2011) Transforming growth factor beta 1 (TGF-beta 1) in atrial fibrillation and acute congestive heart failure. Clin Res Cardiol 100:335–342 Behnes M, Hoffmann U, Lang S, Weiss C, Ahmad-Nejad P, Neumaier M et al (2011) Transforming growth factor beta 1 (TGF-beta 1) in atrial fibrillation and acute congestive heart failure. Clin Res Cardiol 100:335–342
14.
go back to reference Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687PubMedCrossRef Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687PubMedCrossRef
15.
16.
go back to reference Brigstock DR (1999) The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 20:189–206PubMed Brigstock DR (1999) The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 20:189–206PubMed
17.
18.
go back to reference Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA (2009) Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf) 195:321–338CrossRef Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA (2009) Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf) 195:321–338CrossRef
19.
go back to reference de Sousa Chuva, Lopes SM, Feijen A, Korving J, Korchynskyi O, Larsson J, Karlsson S et al (2004) Connective tissue growth factor expression and Smad signaling during mouse heart development and myocardial infarction. Dev Dyn 231:542–550CrossRef de Sousa Chuva, Lopes SM, Feijen A, Korving J, Korchynskyi O, Larsson J, Karlsson S et al (2004) Connective tissue growth factor expression and Smad signaling during mouse heart development and myocardial infarction. Dev Dyn 231:542–550CrossRef
20.
go back to reference Friedrichsen S, Heuer H, Christ S, Cuthill D, Bauer K, Raivich G (2005) Gene expression of connective tissue growth factor in adult mouse. Growth Factors 23:43–53PubMedCrossRef Friedrichsen S, Heuer H, Christ S, Cuthill D, Bauer K, Raivich G (2005) Gene expression of connective tissue growth factor in adult mouse. Growth Factors 23:43–53PubMedCrossRef
21.
go back to reference Koitabashi N, Arai M, Kogure S, Niwano K, Watanabe A, Aoki Y et al (2007) Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension 49:1120–1127PubMedCrossRef Koitabashi N, Arai M, Kogure S, Niwano K, Watanabe A, Aoki Y et al (2007) Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension 49:1120–1127PubMedCrossRef
22.
go back to reference Koitabashi N, Arai M, Niwano K, Watanabe A, Endoh M, Suguta M et al (2008) Plasma connective tissue growth factor is a novel potential biomarker of cardiac dysfunction in patients with chronic heart failure. Eur J Heart Fail 10:373–379PubMedCrossRef Koitabashi N, Arai M, Niwano K, Watanabe A, Endoh M, Suguta M et al (2008) Plasma connective tissue growth factor is a novel potential biomarker of cardiac dysfunction in patients with chronic heart failure. Eur J Heart Fail 10:373–379PubMedCrossRef
23.
go back to reference Adam O, Lavall D, Theobald K, Hohl M, Grube M, Ameling S et al (2010) Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J Am Coll Cardiol 55:469–480PubMedCrossRef Adam O, Lavall D, Theobald K, Hohl M, Grube M, Ameling S et al (2010) Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J Am Coll Cardiol 55:469–480PubMedCrossRef
24.
go back to reference Behnes M, Lang S, Breithardt OA, Kaden JJ, Haghi D, Ahmad-Nejad P et al. (2008) Association of NT-proBNP with severity of heart valve disease in a medical patient population presenting with acute dyspnea or peripheral edema. J Heart Valve Dis 17:557–565PubMed Behnes M, Lang S, Breithardt OA, Kaden JJ, Haghi D, Ahmad-Nejad P et al. (2008) Association of NT-proBNP with severity of heart valve disease in a medical patient population presenting with acute dyspnea or peripheral edema. J Heart Valve Dis 17:557–565PubMed
25.
go back to reference Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr., Drazner MH, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013. [Epub ahead of print] Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr., Drazner MH, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013. [Epub ahead of print]
26.
go back to reference Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193PubMedCrossRef Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193PubMedCrossRef
27.
go back to reference Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843PubMed Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843PubMed
28.
go back to reference Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172 (discussion 207–12)PubMedCrossRef Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172 (discussion 207–12)PubMedCrossRef
29.
go back to reference Cook NR, Ridker PM (2009) Advances in measuring the effect of individual predictors of cardiovascular risk: the role of reclassification measures. Ann Intern Med 150:795–802PubMedCentralPubMedCrossRef Cook NR, Ridker PM (2009) Advances in measuring the effect of individual predictors of cardiovascular risk: the role of reclassification measures. Ann Intern Med 150:795–802PubMedCentralPubMedCrossRef
30.
go back to reference Zobel C, Dorpinghaus M, Reuter H, Erdmann E (2012) Mortality in a cardiac intensive care unit. Clin Res Cardiol 101:521–524PubMedCrossRef Zobel C, Dorpinghaus M, Reuter H, Erdmann E (2012) Mortality in a cardiac intensive care unit. Clin Res Cardiol 101:521–524PubMedCrossRef
31.
go back to reference Edelmann F, Stahrenberg R, Gelbrich G, Durstewitz K, Angermann CE, Dungen HD et al (2011) Contribution of comorbidities to functional impairment is higher in heart failure with preserved than with reduced ejection fraction. Clin Res Cardiol 100:755–764PubMedCentralPubMedCrossRef Edelmann F, Stahrenberg R, Gelbrich G, Durstewitz K, Angermann CE, Dungen HD et al (2011) Contribution of comorbidities to functional impairment is higher in heart failure with preserved than with reduced ejection fraction. Clin Res Cardiol 100:755–764PubMedCentralPubMedCrossRef
32.
go back to reference Reed AL, Tanaka A, Sorescu D, Liu H, Jeong EM, Sturdy M et al (2011) Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol 301:H824–H831PubMedCrossRef Reed AL, Tanaka A, Sorescu D, Liu H, Jeong EM, Sturdy M et al (2011) Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol 301:H824–H831PubMedCrossRef
33.
go back to reference Lampe B, Hammerstingl C, Schwab JO, Mellert F, Stoffel-Wagner B, Grigull A et al (2012) Adverse effects of permanent atrial fibrillation on heart failure in patients with preserved left ventricular function and chronic right apical pacing for complete heart block. Clin Res Cardiol 101:829–836PubMedCrossRef Lampe B, Hammerstingl C, Schwab JO, Mellert F, Stoffel-Wagner B, Grigull A et al (2012) Adverse effects of permanent atrial fibrillation on heart failure in patients with preserved left ventricular function and chronic right apical pacing for complete heart block. Clin Res Cardiol 101:829–836PubMedCrossRef
34.
go back to reference Ahmed MS, Gravning J, Martinov VN, von Lueder TG, Edvardsen T, Czibik G et al (2011) Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 300:H1291–H1302PubMedCrossRef Ahmed MS, Gravning J, Martinov VN, von Lueder TG, Edvardsen T, Czibik G et al (2011) Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 300:H1291–H1302PubMedCrossRef
35.
go back to reference Dendooven A, Gerritsen KG, Nguyen TQ, Kok RJ, Goldschmeding R (2011) Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis. Biomarkers 16:289–301PubMedCrossRef Dendooven A, Gerritsen KG, Nguyen TQ, Kok RJ, Goldschmeding R (2011) Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis. Biomarkers 16:289–301PubMedCrossRef
36.
go back to reference Matsui Y, Sadoshima J (2004) Rapid upregulation of CTGF in cardiac myocytes by hypertrophic stimuli: implication for cardiac fibrosis and hypertrophy. J Mol Cell Cardiol 37:477–481PubMedCrossRef Matsui Y, Sadoshima J (2004) Rapid upregulation of CTGF in cardiac myocytes by hypertrophic stimuli: implication for cardiac fibrosis and hypertrophy. J Mol Cell Cardiol 37:477–481PubMedCrossRef
38.
go back to reference Wang X, McLennan SV, Allen TJ, Tsoutsman T, Semsarian C, Twigg SM (2009) Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor. Am J Physiol Cell Physiol 297:C1490–C1500PubMedCrossRef Wang X, McLennan SV, Allen TJ, Tsoutsman T, Semsarian C, Twigg SM (2009) Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor. Am J Physiol Cell Physiol 297:C1490–C1500PubMedCrossRef
39.
go back to reference Ahmed MS, von Lueder TG, Oie E, Kjekshus H, Attramadal H (2005) Induction of myocardial connective tissue growth factor in pacing-induced heart failure in pigs. Acta Physiol Scand 184:27–36PubMedCrossRef Ahmed MS, von Lueder TG, Oie E, Kjekshus H, Attramadal H (2005) Induction of myocardial connective tissue growth factor in pacing-induced heart failure in pigs. Acta Physiol Scand 184:27–36PubMedCrossRef
40.
go back to reference Ohnishi H, Oka T, Kusachi S, Nakanishi T, Takeda K, Nakahama M et al (1998) Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. J Mol Cell Cardiol 30:2411–2422PubMedCrossRef Ohnishi H, Oka T, Kusachi S, Nakanishi T, Takeda K, Nakahama M et al (1998) Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. J Mol Cell Cardiol 30:2411–2422PubMedCrossRef
41.
go back to reference Kemp TJ, Aggeli IK, Sugden PH, Clerk A (2004) Phenylephrine and endothelin-1 upregulate connective tissue growth factor in neonatal rat cardiac myocytes. J Mol Cell Cardiol 37:603–606PubMedCrossRef Kemp TJ, Aggeli IK, Sugden PH, Clerk A (2004) Phenylephrine and endothelin-1 upregulate connective tissue growth factor in neonatal rat cardiac myocytes. J Mol Cell Cardiol 37:603–606PubMedCrossRef
42.
go back to reference Ruperez M, Lorenzo O, Blanco-Colio LM, Esteban V, Egido J, Ruiz-Ortega M (2003) Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 108:1499–1505PubMedCrossRef Ruperez M, Lorenzo O, Blanco-Colio LM, Esteban V, Egido J, Ruiz-Ortega M (2003) Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 108:1499–1505PubMedCrossRef
43.
go back to reference Bohm M, Voors AA, Ketelslegers JM, Schirmer SH, Turgonyi E, Bramlage P et al (2011) Biomarkers: optimizing treatment guidance in heart failure. Clin Res Cardiol 100:973–981PubMedCrossRef Bohm M, Voors AA, Ketelslegers JM, Schirmer SH, Turgonyi E, Bramlage P et al (2011) Biomarkers: optimizing treatment guidance in heart failure. Clin Res Cardiol 100:973–981PubMedCrossRef
44.
go back to reference Januzzi JL Jr, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG et al (2005) The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 95:948–954PubMedCrossRef Januzzi JL Jr, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG et al (2005) The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol 95:948–954PubMedCrossRef
45.
go back to reference Rachfal AW, Brigstock DR (2005) Structural and functional properties of CCN proteins. Vitam Hormone 70:69–103CrossRef Rachfal AW, Brigstock DR (2005) Structural and functional properties of CCN proteins. Vitam Hormone 70:69–103CrossRef
46.
go back to reference Arnott JA, Lambi AG, Mundy C, Hendesi H, Pixley RA, Owen TA et al (2011) The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit Rev Eukaryot Gene Expr 21:43–69PubMedCentralPubMedCrossRef Arnott JA, Lambi AG, Mundy C, Hendesi H, Pixley RA, Owen TA et al (2011) The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit Rev Eukaryot Gene Expr 21:43–69PubMedCentralPubMedCrossRef
47.
go back to reference Boor P, Floege J (2011) Chronic kidney disease growth factors in renal fibrosis. Clin Exp Pharmacol Physiol 38:441–450PubMedCrossRef Boor P, Floege J (2011) Chronic kidney disease growth factors in renal fibrosis. Clin Exp Pharmacol Physiol 38:441–450PubMedCrossRef
48.
go back to reference Dhar A, Ray A (2010) The CCN family proteins in carcinogenesis. Exp Oncol 32:2–9PubMed Dhar A, Ray A (2010) The CCN family proteins in carcinogenesis. Exp Oncol 32:2–9PubMed
49.
go back to reference Jungel A, Distler JH, Gay S, Distler O (2011) Epigenetic modifications: novel therapeutic strategies for systemic sclerosis? Expert Rev Clin Immunol 7:475–480PubMedCrossRef Jungel A, Distler JH, Gay S, Distler O (2011) Epigenetic modifications: novel therapeutic strategies for systemic sclerosis? Expert Rev Clin Immunol 7:475–480PubMedCrossRef
50.
go back to reference Li GM, Fan JG (2011) The role of CTGF in mediating hepatocytes epithelial-to-mesenchymal transition and hepatic fibrogenesis. Zhonghua Gan Zang Bing Za Zhi 19:795–797PubMed Li GM, Fan JG (2011) The role of CTGF in mediating hepatocytes epithelial-to-mesenchymal transition and hepatic fibrogenesis. Zhonghua Gan Zang Bing Za Zhi 19:795–797PubMed
51.
go back to reference Phanish MK, Winn SK, Dockrell ME (2010) Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114:e83–e92PubMedCrossRef Phanish MK, Winn SK, Dockrell ME (2010) Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114:e83–e92PubMedCrossRef
52.
go back to reference Gerritsen KG, Abrahams AC, Peters HP, Nguyen TQ, Koeners MP, den Hoedt CH et al (2012) Effect of GFR on plasma N-terminal connective tissue growth factor (CTGF) concentrations. Am J Kidney Dis 59:619–627PubMedCrossRef Gerritsen KG, Abrahams AC, Peters HP, Nguyen TQ, Koeners MP, den Hoedt CH et al (2012) Effect of GFR on plasma N-terminal connective tissue growth factor (CTGF) concentrations. Am J Kidney Dis 59:619–627PubMedCrossRef
Metadata
Title
Connective tissue growth factor (CTGF/CCN2): diagnostic and prognostic value in acute heart failure
Authors
Michael Behnes
Martina Brueckmann
Siegfried Lang
Christel Weiß
Parviz Ahmad-Nejad
Michael Neumaier
Martin Borggrefe
Ursula Hoffmann
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
Clinical Research in Cardiology / Issue 2/2014
Print ISSN: 1861-0684
Electronic ISSN: 1861-0692
DOI
https://doi.org/10.1007/s00392-013-0626-6

Other articles of this Issue 2/2014

Clinical Research in Cardiology 2/2014 Go to the issue