Skip to main content
Top
Published in: International Journal of Colorectal Disease 9/2017

01-09-2017 | Original Article

γ-Catenin acts as a tumor suppressor through context-dependent mechanisms in colorectal cancer

Authors: Jutta Maria Nagel, Harald Lahm, Andrea Ofner, Burkhard Göke, Frank Thomas Kolligs

Published in: International Journal of Colorectal Disease | Issue 9/2017

Login to get access

Abstract

Purpose

γ-Catenin is a protein closely related to β-catenin. While the overexpression of β-catenin has been linked with impaired prognosis and survival in various malignancies, both oncogenic and tumor suppressor functions have been described for γ-catenin. Thus, its role in cancer remains controversial. In this study, we examined the impact of γ-catenin expression on the malignant potential of colorectal cancer cells.

Methods

γ-Catenin was knocked down by short interfering RNA in the γ-catenin-proficient DLD-1 cell line and stably overexpressed in the γ-catenin-deficient cell line RKO. The effects of these molecular manipulations on the malignant potential of the cell lines were tested in vitro and in vivo in a xenograft tumor model.

Results

γ-Catenin contributed to Wnt signaling independent of the cellular context. Unlike its sister molecule β-catenin, γ-catenin inhibited cellular invasion and anoikis in cells endogenously expressing γ-catenin. In line with this tumor suppressor function, its de novo expression in RKO cells inhibited proliferation via cell cycle arrest. In a xenograft tumor model, overexpression of γ-catenin starkly reduced tumor growth in vivo.

Conclusions

This is the first report demonstrating a tumor-suppressive effect of γ-catenin in colorectal cancer both in vitro and in vivo. Detailed in vitro analysis revealed that effects of γ-catenin differ in γ-catenin proficient and deficient cells, indicating that its function in colorectal cancer is dependent on the cellular context. This finding adds to our understanding of γ-catenin and may have implications for future studies of catenin/Wnt targeted cancer therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhurinsky J, Shtutman M, Ben-Ze’ev A (2000) Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113(Pt 18):3127–3139PubMed Zhurinsky J, Shtutman M, Ben-Ze’ev A (2000) Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113(Pt 18):3127–3139PubMed
2.
go back to reference Ben-Ze’ev A, Geiger B (1998) Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 10(5):629–639CrossRefPubMed Ben-Ze’ev A, Geiger B (1998) Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 10(5):629–639CrossRefPubMed
3.
go back to reference Kolligs FT, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion, 66 (3):131–144. doi:10.1159/000066755 Kolligs FT, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion, 66 (3):131–144. doi:10.​1159/​000066755
5.
go back to reference Maeda O, Usami N, Kondo M, Takahashi M, Goto H, Shimokata K, Kusugami K, Sekido Y (2004) Plakoglobin (gamma-catenin) has TCF/LEF family-dependent transcriptional activity in beta-catenin-deficient cell line. Oncogene 23(4):964–972. doi:10.1038/sj.onc.1207254 CrossRefPubMed Maeda O, Usami N, Kondo M, Takahashi M, Goto H, Shimokata K, Kusugami K, Sekido Y (2004) Plakoglobin (gamma-catenin) has TCF/LEF family-dependent transcriptional activity in beta-catenin-deficient cell line. Oncogene 23(4):964–972. doi:10.​1038/​sj.​onc.​1207254 CrossRefPubMed
6.
go back to reference Miravet S, Piedra J, Miro F, Itarte E, Garcia de Herreros A, Dunach M (2002) The transcriptional factor Tcf-4 contains different binding sites for beta-catenin and plakoglobin. J Biol Chem 277(3):1884–1891. doi:10.1074/jbc.M110248200 CrossRefPubMed Miravet S, Piedra J, Miro F, Itarte E, Garcia de Herreros A, Dunach M (2002) The transcriptional factor Tcf-4 contains different binding sites for beta-catenin and plakoglobin. J Biol Chem 277(3):1884–1891. doi:10.​1074/​jbc.​M110248200 CrossRefPubMed
7.
go back to reference Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B, Ben-Ze’ev A (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141(6):1433–1448CrossRefPubMedPubMedCentral Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B, Ben-Ze’ev A (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141(6):1433–1448CrossRefPubMedPubMedCentral
8.
go back to reference Kolligs FT, Hu G, Dang CV, Fearon ER (1999) Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 19(8):5696–5706CrossRefPubMedPubMedCentral Kolligs FT, Hu G, Dang CV, Fearon ER (1999) Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 19(8):5696–5706CrossRefPubMedPubMedCentral
9.
go back to reference Kolligs FT, Kolligs B, Hajra KM, Hu G, Tani M, Cho KR, Fearon ER (2000) gamma-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of beta-catenin. Genes Dev 14(11):1319–1331PubMedPubMedCentral Kolligs FT, Kolligs B, Hajra KM, Hu G, Tani M, Cho KR, Fearon ER (2000) gamma-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of beta-catenin. Genes Dev 14(11):1319–1331PubMedPubMedCentral
10.
go back to reference Caca K, Kolligs FT, Ji X, Hayes M, Qian J, Yahanda A, Rimm DL, Costa J, Fearon ER (1999) Beta- and gamma-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Cell Growth Differ 10(6):369–376PubMed Caca K, Kolligs FT, Ji X, Hayes M, Qian J, Yahanda A, Rimm DL, Costa J, Fearon ER (1999) Beta- and gamma-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Cell Growth Differ 10(6):369–376PubMed
11.
go back to reference Shiina H, Breault JE, Basset WW, Enokida H, Urakami S, Li LC, Okino ST, Deguchi M, Kaneuchi M, Terashima M, Yoneda T, Shigeno K, Carroll PR, Igawa M, Dahiya R (2005) Functional loss of the gamma-catenin gene through epigenetic and genetic pathways in human prostate cancer. Cancer Res 65(6):2130–2138. doi:10.1158/0008-5472.CAN-04-3398 CrossRefPubMed Shiina H, Breault JE, Basset WW, Enokida H, Urakami S, Li LC, Okino ST, Deguchi M, Kaneuchi M, Terashima M, Yoneda T, Shigeno K, Carroll PR, Igawa M, Dahiya R (2005) Functional loss of the gamma-catenin gene through epigenetic and genetic pathways in human prostate cancer. Cancer Res 65(6):2130–2138. doi:10.​1158/​0008-5472.​CAN-04-3398 CrossRefPubMed
12.
go back to reference Skotheim RI, Abeler VM, Nesland JM, Fossa SD, Holm R, Wagner U, Florenes VA, Aass N, Kallioniemi OP, Lothe RA (2003) Candidate genes for testicular cancer evaluated by in situ protein expression analyses on tissue microarrays. Neoplasia 5(5):397–404CrossRefPubMedPubMedCentral Skotheim RI, Abeler VM, Nesland JM, Fossa SD, Holm R, Wagner U, Florenes VA, Aass N, Kallioniemi OP, Lothe RA (2003) Candidate genes for testicular cancer evaluated by in situ protein expression analyses on tissue microarrays. Neoplasia 5(5):397–404CrossRefPubMedPubMedCentral
13.
go back to reference Varis A, Wolf M, Monni O, Vakkari ML, Kokkola A, Moskaluk C, Frierson H Jr, Powell SM, Knuutila S, Kallioniemi A, El-Rifai W (2002) Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res 62(9):2625–2629PubMed Varis A, Wolf M, Monni O, Vakkari ML, Kokkola A, Moskaluk C, Frierson H Jr, Powell SM, Knuutila S, Kallioniemi A, El-Rifai W (2002) Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res 62(9):2625–2629PubMed
14.
go back to reference Nagel JM, Kriegl L, Horst D, Engel J, Gautam S, Mantzoros CS, Kirchner T, Goke B, Kolligs FT (2010) gamma-Catenin is an independent prognostic marker in early stage colorectal cancer. Int J Color Dis 25(11):1301–1309. doi:10.1007/s00384-010-1046-y CrossRef Nagel JM, Kriegl L, Horst D, Engel J, Gautam S, Mantzoros CS, Kirchner T, Goke B, Kolligs FT (2010) gamma-Catenin is an independent prognostic marker in early stage colorectal cancer. Int J Color Dis 25(11):1301–1309. doi:10.​1007/​s00384-010-1046-y CrossRef
16.
go back to reference Shafiei F, Rahnama F, Pawella L, Mitchell MD, Gluckman PD, Lobie PE (2008) DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells. Oncogene 27(18):2602–2612. doi:10.1038/sj.onc.1210917 CrossRefPubMed Shafiei F, Rahnama F, Pawella L, Mitchell MD, Gluckman PD, Lobie PE (2008) DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells. Oncogene 27(18):2602–2612. doi:10.​1038/​sj.​onc.​1210917 CrossRefPubMed
17.
go back to reference Winn RA, Bremnes RM, Bemis L, Franklin WA, Miller YE, Cool C, Heasley LE (2002) gamma-Catenin expression is reduced or absent in a subset of human lung cancers and re-expression inhibits transformed cell growth. Oncogene 21(49):7497–7506. doi:10.1038/sj.onc.1205963 CrossRefPubMed Winn RA, Bremnes RM, Bemis L, Franklin WA, Miller YE, Cool C, Heasley LE (2002) gamma-Catenin expression is reduced or absent in a subset of human lung cancers and re-expression inhibits transformed cell growth. Oncogene 21(49):7497–7506. doi:10.​1038/​sj.​onc.​1205963 CrossRefPubMed
18.
19.
go back to reference Weng Z, Xin M, Pablo L, Grueneberg D, Hagel M, Bain G, Muller T, Papkoff J (2002) Protection against anoikis and down-regulation of cadherin expression by a regulatable beta-catenin protein. J Biol Chem 277(21):18677–18686. doi:10.1074/jbc.M105331200 CrossRefPubMed Weng Z, Xin M, Pablo L, Grueneberg D, Hagel M, Bain G, Muller T, Papkoff J (2002) Protection against anoikis and down-regulation of cadherin expression by a regulatable beta-catenin protein. J Biol Chem 277(21):18677–18686. doi:10.​1074/​jbc.​M105331200 CrossRefPubMed
20.
go back to reference Hakimelahi S, Parker HR, Gilchrist AJ, Barry M, Li Z, Bleackley RC, Pasdar M (2000) Plakoglobin regulates the expression of the anti-apoptotic protein BCL-2. J Biol Chem 275(15):10905–10911CrossRefPubMed Hakimelahi S, Parker HR, Gilchrist AJ, Barry M, Li Z, Bleackley RC, Pasdar M (2000) Plakoglobin regulates the expression of the anti-apoptotic protein BCL-2. J Biol Chem 275(15):10905–10911CrossRefPubMed
21.
go back to reference Nagashima H, Okada M, Hidai C, Hosoda S, Kasanuki H, Kawana M (1997) The role of cadherin-catenin-cytoskeleton complex in angiogenesis: antisense oligonucleotide of plakoglobin promotes angiogenesis in vitro, and protein kinase C (PKC) enhances angiogenesis through the plakoglobin signaling pathway. Heart Vessels Suppl 12:110–112 Nagashima H, Okada M, Hidai C, Hosoda S, Kasanuki H, Kawana M (1997) The role of cadherin-catenin-cytoskeleton complex in angiogenesis: antisense oligonucleotide of plakoglobin promotes angiogenesis in vitro, and protein kinase C (PKC) enhances angiogenesis through the plakoglobin signaling pathway. Heart Vessels Suppl 12:110–112
23.
go back to reference Simcha I, Geiger B, Yehuda-Levenberg S, Salomon D, Ben-Ze’ev A (1996) Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin. J Cell Biol 133(1):199–209CrossRefPubMed Simcha I, Geiger B, Yehuda-Levenberg S, Salomon D, Ben-Ze’ev A (1996) Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin. J Cell Biol 133(1):199–209CrossRefPubMed
24.
go back to reference Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122. doi:10.1016/j.cell.2014.07.013 CrossRefPubMedPubMedCentral Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122. doi:10.​1016/​j.​cell.​2014.​07.​013 CrossRefPubMedPubMedCentral
Metadata
Title
γ-Catenin acts as a tumor suppressor through context-dependent mechanisms in colorectal cancer
Authors
Jutta Maria Nagel
Harald Lahm
Andrea Ofner
Burkhard Göke
Frank Thomas Kolligs
Publication date
01-09-2017
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Colorectal Disease / Issue 9/2017
Print ISSN: 0179-1958
Electronic ISSN: 1432-1262
DOI
https://doi.org/10.1007/s00384-017-2846-0

Other articles of this Issue 9/2017

International Journal of Colorectal Disease 9/2017 Go to the issue