Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells

Abstract

Directed by microarray analyses, we report that autocrine human growth hormone (hGH) increased the mRNA and protein expression of DNA methyltransferase 1 (DNMT1), DNMT3A and DNMT3B in mammary carcinoma cells. Autocrine hGH stimulation of DNMT3A and DNMT3B expression was mediated by JAK2 and Src kinases, and treatment of mammary carcinoma cells with the DNMT inhibitor, 5′-aza-2′-deoxycytidine (AZA), abrogated autocrine hGH-stimulated cellular proliferation, apoptosis and anchorage-independent growth. AZA reversed the epitheliomesenchymal transition of mammary carcinoma cells induced by autocrine hGH, to an epithelioid morphology and abrogated cell migration stimulated by autocrine hGH. Autocrine hGH-stimulated hypermethylation of the first exon of the PLAKOGLOBIN gene and AZA abrogated the ability of autocrine hGH to repress plakoglobin gene transcription. Small interfering RNA (siRNA)-mediated depletion of the individual DNMT molecules did not release autocrine hGH repression of PLAKOGLOBIN promoter activity nor did individual DNMT depletion affect autocrine hGH-stimulated migration. However, concomitant siRNA-mediated depletion of both DNMT3A and DNMT3B abrogated hypermethylation of the PLAKOGLOBIN gene stimulated by autocrine hGH and subsequent repression of plakoglobin gene transcription and increased cell migration. Thus, the autocrine hGH-stimulated increases in DNMT3A and DNMT3B expression mediate repression of plakoglobin gene transcription by direct hypermethylation of its promoter and consequent phenotypic conversion of mammary carcinoma cells. Autocrine hGH, therefore, utilizes DNA methylation as a mechanism to exert its oncogenic effects in mammary carcinoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bai S, Ghoshal K, Datta J, Majumder S, Yoon SO, Jacob ST . (2005). DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol Cell Biol 25: 751–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartolomei MS, Tilghman SM . (1997). Genomic imprinting in mammals. Annu Rev Genet 31: 493–525.

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB . (2005). DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2 (Suppl 1): S4–S11.

    Article  CAS  PubMed  Google Scholar 

  • Belinsky SA, Nikula KJ, Baylin SB, Issa JP . (1996). Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci USA 93: 4045–4050.

    Article  CAS  PubMed  Google Scholar 

  • Bestor T, Laudano A, Mattaliano R, Ingram V . (1988). Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203: 971–983.

    Article  CAS  PubMed  Google Scholar 

  • Breault JE, Shiina H, Igawa M, Ribeiro-Filho LA, Deguchi M, Enokida H et al. (2005). Methylation of the gamma-catenin gene is associated with poor prognosis of renal cell carcinoma. Clin Cancer Res 11: 557–564.

    CAS  PubMed  Google Scholar 

  • Cameron EE, Baylin SB, Herman JG . (1999). p15(INK4B) CpG island methylation in primary acute leukemia is heterogenous and suggests density as a critical factor for transcriptional silencing. Blood 94: 2445–2451.

    CAS  PubMed  Google Scholar 

  • el-Deiry W, Nelkin BD, Celano P, Yen RW, Falco JP, Hamilton SR et al. (1991). High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci USA 88: 3470–3474.

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga Y, Liu H, Shimizu M, Komiya S, Kawasuji M, Nagafuchi A . (2005). Defining the roles of β-catenin and plakoglobin in cell–cell adhesion: isolation of β-catenin/plakoglobin-deficient F9 Cells. Cell Struct Funct 30: 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Hausherr A, Tavares R, Schäffer M, Obermeier A, Miksch C, Mitina A et al. (2007). Inhibition of IL-6-dependent growth of myeloma cells by an acidic peptide repressing the gp130-mediated activation of Src family kinases. Oncogene 26: 4987–4998.

    Article  CAS  PubMed  Google Scholar 

  • Herman JG . (1999). Hypermethylation of tumour suppressor genes in cancer. Semin Cancer Biol 9: 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelly JA et al. (2005). Interleukin 6 supports the maintenance of p53 tumour suppressor gene promoter methylation. Cancer Res 65: 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL . (2001). Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem 276: 39508–39511.

    Article  CAS  PubMed  Google Scholar 

  • Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD et al. (1993). Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 85: 1235–1240.

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Beard C, Lee J, Marahrens Y, Panning B . (1998). Mammalian X chromosome inactivation. Novartis Found Symp 214: 200–209.

    CAS  PubMed  Google Scholar 

  • Jones PA . (2002). DNA methylation and cancer. Oncogene 21: 5358–5360.

    Article  CAS  PubMed  Google Scholar 

  • Kaulsay KK, Mertani HC, Tornell J, Morel G, Lee KO, Lobie PE . (1999). Autocrine stimulation of human mammary carcinoma cell proliferation by human growth hormone. Exp Cell Res 250: 35–50.

    Article  CAS  PubMed  Google Scholar 

  • Kaulsay KK, Zhu T, Bennett WF, Lee KO, Lobie PE . (2001). The effects of autocrine human growth hormone (hGH) on human mammary carcinoma cell behavior are mediated via the hGH receptor. Endocrinology 142: 767–777.

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R . (1992a). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.

    Article  CAS  Google Scholar 

  • Ling L, Zhu T, Lobie PE . (2003). Src-CrkII-C3G-dependent activation of Rap1 switches growth hormone-stimulated p44/42 MAP kinase and JNK/SAPK activities. J Biol Chem 278: 27301–27311.

    Article  CAS  PubMed  Google Scholar 

  • Ling L, Lobie PE . (2004). RhoA/ROCK activation by growth hormone abrogates p300/histone deacetylase 6 repression of Stat5-mediated transcription. J Biol Chem 279: 32737–32750.

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T . (2007). Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene; e-pub ahead of print: 9 July 2007.

  • Mertani HC, Zhu T, Goh EL, Lee KO, Morel G, Lobie PE . (2001). Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival. J Biol Chem 276: 21464–21475.

    Article  CAS  PubMed  Google Scholar 

  • Mukhina S, Mertani HC, Guo K, Lee KO, Gluckman PD, Lobie PE . (2004). Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone. Proc Natl Acad Sci USA 101: 15166–15171.

    Article  CAS  PubMed  Google Scholar 

  • Nemeth SP, Fox LG, DeMarco M, Brugge JS . (1989). Deletions within the amino-terminal half of the c-src gene product that alter the functional activity of the protein. Mol Cell Biol 9: 1109–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka M, Meacham AM, Hamazaki T, Rodi N, Chang L, Terada N . (2005). De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of 5-aza-2′-deoxycytidine. Oncogene 24: 3091–3099.

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DA, Haber EL . (1999). DNA methyltransferases DNMT-3a and DNMT-3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.

    Article  CAS  Google Scholar 

  • Perry JK, Emerald BS, Mertani HC, Lobie PE . (2006). The oncogenic potential of growth hormone. Growth Horm IGF Res 16: 277–289.

    Article  CAS  PubMed  Google Scholar 

  • Potter E, Braun S, Lehmann U, Brabant G . (2001). Molecular cloning of a functional promoter of the human plakoglobin gene. Eur J Endocrinol 145: 625–633.

    Article  CAS  PubMed  Google Scholar 

  • Rahnama F, Shafiei F, Gluckman PD, Mitchell MD, Lobie PE . (2006). Epigenetic regulation of human trophoblastic cell migration and invasion. Endocrinology 147: 5275–5283.

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA et al. (1999). The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27: 2291–2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharinen P, Takaluoma K, Silvennoinen O . (2000). Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 20: 3387–3395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savagner P . (2001). Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23: 912–923.

    Article  CAS  PubMed  Google Scholar 

  • Serrano J, Kuehl DW, Naumann S . (1993). Analytical procedures and quality assurance criteria for the determination of major and minor deoxynucleotides in fish tissue DNA by liquid chromatography-ultraviolet spectroscopy and liquid chromatography-thermospray mass spectrometry. J Chromatogr 615: 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Shiina H, Breault JE, Basset WW, Enokida H, Urakami S, Li L-C et al. (2005). Functional loss of the gamma-catenin gene through epigenetic and genetic pathways in human prostate cancer. Cancer Res 15: 2130–2138.

    Article  Google Scholar 

  • Sung J, Turner J, McCarthy S, Enkemann S, Li CG, Yan P et al. (2005). Oncogene regulation of tumor suppressor genes in tumorigenesis. Carcinogenesis 26: 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T . (2001). Gene silencing as an adaptive defence against viruses. Nature 411: 834–842.

    Article  CAS  PubMed  Google Scholar 

  • Waters MJ, Shang CA, Behncken SN, Tam SP, Li H, Shen B, Lobie PE . (1999). Growth hormone as a cytokine. Clin Exp Phamacol Physiol 26: 760–764.

    Article  CAS  Google Scholar 

  • Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T . (2006). Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res 66: 10517–10524.

    Article  CAS  PubMed  Google Scholar 

  • Winn RA, Bremnes RM, Bemis L, Franklin WA, Miller YE, Cool C, Heasley LE et al. (2002). Gamma-catenin expression is reduced or absent in a subset of human lung cancers and re-expression inhibits transformed cell growth. Oncogene 21: 7497–7506.

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa Y, Ito E, Yuasa Y, Maruyama K . (2002). The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochimica Biophys Acta 1577: 457–465.

    Article  CAS  Google Scholar 

  • Zhang X, Zhu T, Chen Y, Mertani HC, Lee KO, Lobie PE . (2003). Human growth homone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem 278: 7580–7590.

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Emerald BS, Zhang X, Lee KO, Gluckman PD, Lobie PE . (2005). Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res 65: 317–324.

    CAS  PubMed  Google Scholar 

  • Zhu T, Ling L, Lobie PE . (2002). Identification of a JAK2-independent pathway regulating growth hormone (GH)-stimulated p44/42 mitogen-activated protein kinase activity. GH activation of Ral and phospholipase D is Src-dependent. J Biol Chem 277: 45592–45603.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Research Centre for Growth and Development, in New Zealand and the Breast cancer Research Trust of New Zealand. We would especially like to thank Dr Y Yanagisawa and Dr G Brabant for gifts of the relevant plasmids. We would also like to thank Mr Eric Thorstensen for the global methylation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P E Lobie.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafiei, F., Rahnama, F., Pawella, L. et al. DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells. Oncogene 27, 2602–2612 (2008). https://doi.org/10.1038/sj.onc.1210917

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210917

Keywords

This article is cited by

Search

Quick links