Skip to main content
Top
Published in: European Radiology 8/2018

01-08-2018 | Computed Tomography

A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions

Authors: Carlo N. De Cecco, Damiano Caruso, U. Joseph Schoepf, Domenico De Santis, Giuseppe Muscogiuri, Moritz H. Albrecht, Felix G. Meinel, Julian L. Wichmann, Philip F. Burchett, Akos Varga-Szemes, Douglas H. Sheafor, Andrew D. Hardie

Published in: European Radiology | Issue 8/2018

Login to get access

Abstract

Objectives

To assess the image quality and diagnostic accuracy of a noise-optimized virtual monoenergetic imaging (VMI+) algorithm compared with standard virtual monoenergetic imaging (VMI) and linearly-blended (M_0.6) reconstructions for the detection of hypervascular liver lesions in dual-energy CT (DECT).

Methods

Thirty patients who underwent clinical liver MRI were prospectively enrolled. Within 60 days of MRI, arterial phase DECT images were acquired on a third-generation dual-source CT and reconstructed with M_0.6, VMI and VMI+ algorithms from 40 to 100 keV in 5-keV intervals. Liver parenchyma and lesion contrast-to-noise-ratios (CNR) were calculated. Two radiologists assessed image quality. Lesion sensitivity, specificity and area under the receiver operating characteristic curves (AUCs) were calculated for the three algorithms with MRI as the reference standard.

Results

VMI+ datasets from 40 to 60 keV provided the highest liver parenchyma and lesion CNR (p ≤0.021); 50 keV VMI+ provided the highest subjective image quality (4.40±0.54), significantly higher compared to VMI and M_0.6 (all p <0.001), and the best diagnostic accuracy in < 1-cm diameter lesions (AUC=0.833 vs. 0.777 and 0.749, respectively; p ≤0.003).

Conclusions

50-keV VMI+ provides superior image quality and diagnostic accuracy for the detection of hypervascular liver lesions with a diameter < 1cm compared to VMI or M_0.6 reconstructions.

Key Points

• Low-keV VMI+ are characterized by higher contrast resulting from maximum iodine attenuation.
• VMI+ provides superior image quality compared with VMI or M_0.6.
• 50-keV_VMI+ provides higher accuracy for the detection of hypervascular liver lesions < 1cm.
Appendix
Available only for authorised users
Literature
1.
go back to reference Meier A, Wurnig M, Desbiolles L, Leschka S, Frauenfelder T, Alkadhi H (2015) Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography. Clin Radiol 70:1244–1251CrossRefPubMed Meier A, Wurnig M, Desbiolles L, Leschka S, Frauenfelder T, Alkadhi H (2015) Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography. Clin Radiol 70:1244–1251CrossRefPubMed
2.
go back to reference Krauss B, Grant KL, Schmidt BT, Flohr TG (2015) The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Invest Radiol 50:114–118CrossRefPubMed Krauss B, Grant KL, Schmidt BT, Flohr TG (2015) The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Invest Radiol 50:114–118CrossRefPubMed
3.
go back to reference Meyer M, Haubenreisser H, Schoepf UJ et al (2014) Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology 273:373–382CrossRefPubMed Meyer M, Haubenreisser H, Schoepf UJ et al (2014) Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology 273:373–382CrossRefPubMed
4.
go back to reference Husarik DB, Gordic S, Desbiolles L et al (2015) Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: ex-vivo and patient experience in various body sizes. Invest Radiol 50:695–702CrossRefPubMed Husarik DB, Gordic S, Desbiolles L et al (2015) Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: ex-vivo and patient experience in various body sizes. Invest Radiol 50:695–702CrossRefPubMed
5.
go back to reference Shuman WP, Green DE, Busey JM et al (2014) Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. AJR Am J Roentgenol 203:601–606CrossRefPubMed Shuman WP, Green DE, Busey JM et al (2014) Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. AJR Am J Roentgenol 203:601–606CrossRefPubMed
6.
go back to reference Sudarski S, Apfaltrer P, Nance JW Jr et al (2014) Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions: an analysis in patients with gastrointestinal stromal tumor. Acad Radiol 21:514–522CrossRefPubMed Sudarski S, Apfaltrer P, Nance JW Jr et al (2014) Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions: an analysis in patients with gastrointestinal stromal tumor. Acad Radiol 21:514–522CrossRefPubMed
7.
go back to reference Yamada Y, Jinzaki M, Tanami Y, Abe T, Kuribayashi S (2012) Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases: the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography. Invest Radiol 47:292–298CrossRefPubMed Yamada Y, Jinzaki M, Tanami Y, Abe T, Kuribayashi S (2012) Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases: the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography. Invest Radiol 47:292–298CrossRefPubMed
8.
go back to reference Delesalle MA, Pontana F, Duhamel A et al (2013) Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology 267:256–266CrossRefPubMed Delesalle MA, Pontana F, Duhamel A et al (2013) Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology 267:256–266CrossRefPubMed
9.
go back to reference Mileto A, Nelson RC, Samei E et al (2014) Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. AJR Am J Roentgenol 203:1257–1264CrossRefPubMed Mileto A, Nelson RC, Samei E et al (2014) Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. AJR Am J Roentgenol 203:1257–1264CrossRefPubMed
10.
go back to reference Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49:586–592CrossRefPubMed Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49:586–592CrossRefPubMed
12.
go back to reference Albrecht MH, Trommer J, Wichmann JL et al (2016) Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen. Invest Radiol 51:582–590CrossRefPubMed Albrecht MH, Trommer J, Wichmann JL et al (2016) Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen. Invest Radiol 51:582–590CrossRefPubMed
13.
go back to reference Kondo H, Kanematsu M, Goshima S et al (2010) Body size indexes for optimizing iodine dose for aortic and hepatic enhancement at multidetector CT: comparison of total body weight, lean body weight, and blood volume. Radiology 254:163–169CrossRefPubMed Kondo H, Kanematsu M, Goshima S et al (2010) Body size indexes for optimizing iodine dose for aortic and hepatic enhancement at multidetector CT: comparison of total body weight, lean body weight, and blood volume. Radiology 254:163–169CrossRefPubMed
14.
go back to reference Wichmann JL, Hardie AD, Schoepf UJ et al (2017) Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol 27:642–650CrossRefPubMed Wichmann JL, Hardie AD, Schoepf UJ et al (2017) Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol 27:642–650CrossRefPubMed
15.
go back to reference Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection--initial clinical experience. Radiology 251:771–779CrossRefPubMed Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection--initial clinical experience. Radiology 251:771–779CrossRefPubMed
16.
go back to reference Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:155 Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:155
17.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed
18.
go back to reference Marin D, Caywood DT, Mileto A et al (2015) Dual-energy multidetector-row computed tomography of the hepatic arterial system: optimization of energy and material-specific reconstruction techniques. J Comput Assist Tomogr 39:721–729CrossRefPubMed Marin D, Caywood DT, Mileto A et al (2015) Dual-energy multidetector-row computed tomography of the hepatic arterial system: optimization of energy and material-specific reconstruction techniques. J Comput Assist Tomogr 39:721–729CrossRefPubMed
19.
go back to reference Yu Y, Lin X, Chen K et al (2013) Hepatocellular carcinoma and focal nodular hyperplasia of the liver: differentiation with CT spectral imaging. Eur Radiol 23:1660–1668CrossRefPubMed Yu Y, Lin X, Chen K et al (2013) Hepatocellular carcinoma and focal nodular hyperplasia of the liver: differentiation with CT spectral imaging. Eur Radiol 23:1660–1668CrossRefPubMed
20.
go back to reference Albrecht MH, Scholtz JE, Kraft J et al (2015) Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer. Eur Radiol 25:2493–2501CrossRefPubMed Albrecht MH, Scholtz JE, Kraft J et al (2015) Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer. Eur Radiol 25:2493–2501CrossRefPubMed
21.
go back to reference Frellesen C, Fessler F, Hardie AD et al (2015) Dual-energy CT of the pancreas: improved carcinoma-to-pancreas contrast with a noise-optimized monoenergetic reconstruction algorithm. Eur J Radiol 84:2052–2058CrossRefPubMed Frellesen C, Fessler F, Hardie AD et al (2015) Dual-energy CT of the pancreas: improved carcinoma-to-pancreas contrast with a noise-optimized monoenergetic reconstruction algorithm. Eur J Radiol 84:2052–2058CrossRefPubMed
22.
go back to reference Hardie AD, Picard MM, Camp ER et al (2015) Application of an advanced image-based virtual monoenergetic reconstruction of dual source dual-energy CT data at low keV increases image quality for routine pancreas imaging. J Comput Assist Tomogr 39:716–720CrossRefPubMed Hardie AD, Picard MM, Camp ER et al (2015) Application of an advanced image-based virtual monoenergetic reconstruction of dual source dual-energy CT data at low keV increases image quality for routine pancreas imaging. J Comput Assist Tomogr 39:716–720CrossRefPubMed
23.
go back to reference Frellesen C, Kaup M, Wichmann JL et al (2016) Noise-optimized advanced image-based virtual monoenergetic imaging for improved visualization of lung cancer: comparison with traditional virtual monoenergetic imaging. Eur J Radiol 85:665–672CrossRefPubMed Frellesen C, Kaup M, Wichmann JL et al (2016) Noise-optimized advanced image-based virtual monoenergetic imaging for improved visualization of lung cancer: comparison with traditional virtual monoenergetic imaging. Eur J Radiol 85:665–672CrossRefPubMed
24.
go back to reference Martin SS, Pfeifer S, Wichmann JL et al (2017) Noise-optimized virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in patients with gastrointestinal stromal tumors. Abdom Radiol (NY) 42:718–726CrossRef Martin SS, Pfeifer S, Wichmann JL et al (2017) Noise-optimized virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in patients with gastrointestinal stromal tumors. Abdom Radiol (NY) 42:718–726CrossRef
25.
go back to reference Caruso D, De Cecco CN, Schoepf UJ et al (2017) Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Clin Imaging 41:118–124CrossRefPubMed Caruso D, De Cecco CN, Schoepf UJ et al (2017) Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Clin Imaging 41:118–124CrossRefPubMed
26.
go back to reference Lee YJ, Lee JM, Lee JS et al (2015) Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 275:97–109CrossRefPubMed Lee YJ, Lee JM, Lee JS et al (2015) Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 275:97–109CrossRefPubMed
27.
go back to reference Lv P, Lin XZ, Chen K, Gao J (2012) Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol 22:2117–2124CrossRefPubMed Lv P, Lin XZ, Chen K, Gao J (2012) Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol 22:2117–2124CrossRefPubMed
Metadata
Title
A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions
Authors
Carlo N. De Cecco
Damiano Caruso
U. Joseph Schoepf
Domenico De Santis
Giuseppe Muscogiuri
Moritz H. Albrecht
Felix G. Meinel
Julian L. Wichmann
Philip F. Burchett
Akos Varga-Szemes
Douglas H. Sheafor
Andrew D. Hardie
Publication date
01-08-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5313-6

Other articles of this Issue 8/2018

European Radiology 8/2018 Go to the issue