Skip to main content
Top
Published in: European Radiology 11/2016

01-11-2016 | Breast

Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging

Authors: Chunling Liu, Kun Wang, Queenie Chan, Zaiyi Liu, Jine Zhang, Hui He, Shuixing Zhang, Changhong Liang

Published in: European Radiology | Issue 11/2016

Login to get access

Abstract

Objectives

To compare diagnostic performance for breast lesions by quantitative parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and to explore whether correlations exist between these parameters.

Methods

IVIM and DCE MRI were performed on a 1.5-T MRI scanner in patients with suspicious breast lesions. Thirty-six breast cancers and 23 benign lesions were included in the study. Quantitative parameters from IVIM (D, f and D*) and DCE MRI (Ktrans, Kep, Ve and Vp) were calculated and compared between malignant and benign lesions. Spearman correlation test was used to evaluate correlations between them.

Results

D, f, D* from IVIM and Ktrans, Kep, Vp from DCE MRI were statistically different between breast cancers and benign lesions (p < 0.05, respectively) and D demonstrated the largest area under the receiver-operating characteristic curve (AUC = 0.917) and had the highest specificity (83 %). The f value was moderately statistically correlated with Vp (r = 0.692) and had a poor correlation with Ktrans (r = 0.456).

Conclusions

IVIM MRI is useful in the differentiation of breast lesions. Significant correlations were found between perfusion-related parameters from IVIM and DCE MRI. IVIM may be a useful adjunctive tool to standard MRI in diagnosing breast cancer.

Key Points

IVIM provided diffusion as well as perfusion information
IVIM could help differential diagnosis of breast lesions
Correlations were found between perfusion-related parameters from IVIM and DCE MRI
Literature
1.
2.
go back to reference Aberle DR, Chiles C, Gatsonis C et al (2005) Imaging and cancer: research strategy of the american college of radiology imaging network. Radiology 235:741–751CrossRefPubMed Aberle DR, Chiles C, Gatsonis C et al (2005) Imaging and cancer: research strategy of the american college of radiology imaging network. Radiology 235:741–751CrossRefPubMed
3.
go back to reference Koo HR, Cho N, Song IC et al (2012) Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers. J Magn Reson Imaging 36:145–151CrossRefPubMed Koo HR, Cho N, Song IC et al (2012) Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers. J Magn Reson Imaging 36:145–151CrossRefPubMed
4.
go back to reference Ei Khouli RH, Jacobs MA, Mezban SD et al (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73CrossRefPubMedPubMedCentral Ei Khouli RH, Jacobs MA, Mezban SD et al (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73CrossRefPubMedPubMedCentral
5.
go back to reference Partridge SC, Demartini WB, Kurland BF et al (2010) Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI. J Magn Reson Imaging 31:562–570CrossRefPubMed Partridge SC, Demartini WB, Kurland BF et al (2010) Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI. J Magn Reson Imaging 31:562–570CrossRefPubMed
6.
go back to reference Lehman CD (2012) Diffusion weighted imaging (DWI) of the breast: ready for clinical practice? Eur J Radiol 81:S80–S81CrossRefPubMed Lehman CD (2012) Diffusion weighted imaging (DWI) of the breast: ready for clinical practice? Eur J Radiol 81:S80–S81CrossRefPubMed
7.
go back to reference Chen X, Li W, Zhang Y et al (2010) Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer 10:693CrossRefPubMedPubMedCentral Chen X, Li W, Zhang Y et al (2010) Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer 10:693CrossRefPubMedPubMedCentral
8.
go back to reference Peters NHGM, Borel Rinkes IHM, Zuithoff NPA et al (2008) Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246:116–124CrossRefPubMed Peters NHGM, Borel Rinkes IHM, Zuithoff NPA et al (2008) Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246:116–124CrossRefPubMed
9.
go back to reference Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407CrossRefPubMed Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407CrossRefPubMed
10.
go back to reference Zhang Y-D, Wang Q, Wu C-J et al (2015) The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol 25:994–1004CrossRefPubMed Zhang Y-D, Wang Q, Wu C-J et al (2015) The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol 25:994–1004CrossRefPubMed
11.
go back to reference Eckerbom P, Hansell P, Bjerner T et al (2013) Intravoxel incoherent motion MR imaging of the kidney: pilot study. Adv Exp Med Biol 765:55–58CrossRefPubMed Eckerbom P, Hansell P, Bjerner T et al (2013) Intravoxel incoherent motion MR imaging of the kidney: pilot study. Adv Exp Med Biol 765:55–58CrossRefPubMed
12.
go back to reference Guiu B, Petit J-M, Capitan V et al (2012) Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 265:96–103CrossRefPubMed Guiu B, Petit J-M, Capitan V et al (2012) Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 265:96–103CrossRefPubMed
13.
go back to reference Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology 249:891–899CrossRefPubMed Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology 249:891–899CrossRefPubMed
14.
go back to reference Sumi M, Van Cauteren M, Sumi T et al (2012) Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology 263:770–777CrossRefPubMed Sumi M, Van Cauteren M, Sumi T et al (2012) Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology 263:770–777CrossRefPubMed
15.
go back to reference Alison M, Chalouhi GE, Autret G et al (2013) Use of intravoxel incoherent motion MR imaging to assess placental perfusion in a murine model of placental insufficiency. Investig Radiol 48:17–23CrossRef Alison M, Chalouhi GE, Autret G et al (2013) Use of intravoxel incoherent motion MR imaging to assess placental perfusion in a murine model of placental insufficiency. Investig Radiol 48:17–23CrossRef
16.
go back to reference Sumi M, Nakamura T (2014) Head and neck tumours: combined MRI assessment based on IVIM and TIC analyses for the differentiation of tumors of different histological types. Eur Radiol 24:223–231CrossRefPubMed Sumi M, Nakamura T (2014) Head and neck tumours: combined MRI assessment based on IVIM and TIC analyses for the differentiation of tumors of different histological types. Eur Radiol 24:223–231CrossRefPubMed
17.
go back to reference Zhang S, Jia Q, Zhang Z et al (2014) Intravoxel incoherent motion MRI: emerging applications for nasopharyngeal carcinoma at the primary site. Eur Radiol 24:1998–2004CrossRefPubMedPubMedCentral Zhang S, Jia Q, Zhang Z et al (2014) Intravoxel incoherent motion MRI: emerging applications for nasopharyngeal carcinoma at the primary site. Eur Radiol 24:1998–2004CrossRefPubMedPubMedCentral
18.
go back to reference Jia Q-J, Zhang S-X, Chen W-B et al (2014) Initial experience of correlating parameters of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T in nasopharyngeal carcinoma. Eur Radiol 24:3076–3087CrossRefPubMed Jia Q-J, Zhang S-X, Chen W-B et al (2014) Initial experience of correlating parameters of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T in nasopharyngeal carcinoma. Eur Radiol 24:3076–3087CrossRefPubMed
19.
go back to reference Wang L, Lin J, Liu K et al (2014) Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging. Eur Radiol 24:1914–1922CrossRefPubMed Wang L, Lin J, Liu K et al (2014) Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging. Eur Radiol 24:1914–1922CrossRefPubMed
20.
go back to reference Liu C, Liang C, Liu Z, et al. (2013) Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol 82:e782–789 Liu C, Liang C, Liu Z, et al. (2013) Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol 82:e782–789
21.
go back to reference Sigmund EE, Cho GY, Kim S et al (2011) Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447CrossRefPubMedPubMedCentral Sigmund EE, Cho GY, Kim S et al (2011) Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447CrossRefPubMedPubMedCentral
22.
go back to reference Bokacheva L, Kaplan JB, Giri DD et al (2014) Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging 40:813–823CrossRefPubMed Bokacheva L, Kaplan JB, Giri DD et al (2014) Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging 40:813–823CrossRefPubMed
23.
go back to reference Tamura T, Usui S, Murakami S et al (2012) Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer. Magn Reson Med 68:890–897CrossRefPubMed Tamura T, Usui S, Murakami S et al (2012) Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer. Magn Reson Med 68:890–897CrossRefPubMed
24.
go back to reference Pang Y, Turkbey B, Bernardo M et al (2013) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med 69:553–562CrossRefPubMed Pang Y, Turkbey B, Bernardo M et al (2013) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med 69:553–562CrossRefPubMed
25.
go back to reference Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMed Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMed
26.
go back to reference Murase K (2004) Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med 51:858–862CrossRefPubMed Murase K (2004) Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med 51:858–862CrossRefPubMed
27.
go back to reference Benjaminsen IC, Graff BA, Brurberg KG, Rofstad EK (2004) Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced MRI: a preclinical study of human melanoma xenografts. Magn Reson Med 52:269–276CrossRefPubMed Benjaminsen IC, Graff BA, Brurberg KG, Rofstad EK (2004) Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced MRI: a preclinical study of human melanoma xenografts. Magn Reson Med 52:269–276CrossRefPubMed
28.
go back to reference Iima M, Yano K, Kataoka M et al (2015) Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Investig Radiol 50:205–211CrossRef Iima M, Yano K, Kataoka M et al (2015) Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Investig Radiol 50:205–211CrossRef
29.
go back to reference Partridge SC, McDonald ES (2013) Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications. Magn Reson Imaging Clin N Am 21:601–624CrossRefPubMedPubMedCentral Partridge SC, McDonald ES (2013) Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications. Magn Reson Imaging Clin N Am 21:601–624CrossRefPubMedPubMedCentral
30.
go back to reference Tamura T, Usui S, Murakami S et al (2010) Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci 9:195–207CrossRefPubMed Tamura T, Usui S, Murakami S et al (2010) Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci 9:195–207CrossRefPubMed
31.
go back to reference Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505CrossRefPubMed Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505CrossRefPubMed
32.
go back to reference Ma Z-S, Wang D-W, Sun X-B et al (2015) Quantitative analysis of 3-Tesla magnetic resonance imaging in the differential diagnosis of breast lesions. Exp Ther Med 9:913–918PubMed Ma Z-S, Wang D-W, Sun X-B et al (2015) Quantitative analysis of 3-Tesla magnetic resonance imaging in the differential diagnosis of breast lesions. Exp Ther Med 9:913–918PubMed
33.
go back to reference Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62CrossRefPubMed Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62CrossRefPubMed
34.
go back to reference Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101CrossRefPubMed Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101CrossRefPubMed
35.
go back to reference Baek H-M, Chen J-H, Nie K et al (2009) Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology 251:653–662CrossRefPubMedPubMedCentral Baek H-M, Chen J-H, Nie K et al (2009) Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology 251:653–662CrossRefPubMedPubMedCentral
36.
go back to reference Wirestam R, Borg M, Brockstedt S et al (2001) Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 42:123–128CrossRefPubMed Wirestam R, Borg M, Brockstedt S et al (2001) Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 42:123–128CrossRefPubMed
Metadata
Title
Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging
Authors
Chunling Liu
Kun Wang
Queenie Chan
Zaiyi Liu
Jine Zhang
Hui He
Shuixing Zhang
Changhong Liang
Publication date
01-11-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 11/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4241-6

Other articles of this Issue 11/2016

European Radiology 11/2016 Go to the issue