Skip to main content
Top
Published in: European Radiology 10/2008

01-10-2008 | Molecular Imaging

Cell tracking with optical imaging

Authors: Elizabeth J. Sutton, Tobias D. Henning, Bernd J. Pichler, Christoph Bremer, Heike E. Daldrup-Link

Published in: European Radiology | Issue 10/2008

Login to get access

Abstract

Adaptability, sensitivity, resolution and non-invasiveness are the attributes that have contributed to the longstanding use of light as an investigational tool and form the basis of optical imaging (OI). OI, which encompasses numerous techniques and methods, is rapid (<5 min), inexpensive, noninvasive, nontoxic (no radiation) and has molecular (single-cell) sensitivity, which is equal to that of conventional nuclear imaging and several orders of magnitude greater than MRI. This article provides a comprehensive overview of emerging applications of OI-based techniques for in vivo monitoring of new stem cell-based therapies. Different fluorochromes for cell labeling, labeling methods and OI-based cell-tracking techniques will be reviewed with respect to their technical principles, current applications and aims for clinical translation. Advantages and limitations of these new OI-based cell-tracking techniques will be discussed. Non-invasive mapping of cells labeled with fluorochromes or OI marker genes has the potential to evolve further within the clinical realm.
Literature
1.
go back to reference Gheysens O, Lin S, Cao F et al (2006) Noninvasive evaluation of immunosuppressive drug efficacy on acute donor cell survival. Mol Imaging Biol 8(3):163–170PubMedCrossRef Gheysens O, Lin S, Cao F et al (2006) Noninvasive evaluation of immunosuppressive drug efficacy on acute donor cell survival. Mol Imaging Biol 8(3):163–170PubMedCrossRef
2.
go back to reference Frangioni JV, Hajjar RJ (2004) In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110(21):3378–3383PubMedCrossRef Frangioni JV, Hajjar RJ (2004) In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110(21):3378–3383PubMedCrossRef
3.
go back to reference Becker A, Hessenius C, Bhargava S et al (2000) Cyanine dye labeled vasoactive intestinal peptide and somatostatin analog for optical detection of gastroenteropancreatic tumors. Ann N Y Acad Sci 921:275–278PubMedCrossRef Becker A, Hessenius C, Bhargava S et al (2000) Cyanine dye labeled vasoactive intestinal peptide and somatostatin analog for optical detection of gastroenteropancreatic tumors. Ann N Y Acad Sci 921:275–278PubMedCrossRef
4.
go back to reference Licha K, Olbrich C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev 57(8):1087–1108PubMedCrossRef Licha K, Olbrich C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev 57(8):1087–1108PubMedCrossRef
5.
go back to reference Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13(1):195–208PubMed Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13(1):195–208PubMed
6.
7.
go back to reference Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2(2):215–225PubMedCrossRef Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2(2):215–225PubMedCrossRef
8.
go back to reference Shah K, Bureau E, Kim DE et al (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57(1):34–41PubMedCrossRef Shah K, Bureau E, Kim DE et al (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57(1):34–41PubMedCrossRef
9.
go back to reference Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6(4):432–440PubMedCrossRef Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6(4):432–440PubMedCrossRef
10.
go back to reference Persigehl T, Heindel W, Bremer C (2005) MR and optical approaches to molecular imaging. Abdom Imaging 30(3):342–354PubMedCrossRef Persigehl T, Heindel W, Bremer C (2005) MR and optical approaches to molecular imaging. Abdom Imaging 30(3):342–354PubMedCrossRef
11.
go back to reference Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33PubMedCrossRef Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33PubMedCrossRef
12.
go back to reference Hardy J, Edinger M, Bachmann MH et al (2001) Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 29(12):1353–1360PubMedCrossRef Hardy J, Edinger M, Bachmann MH et al (2001) Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 29(12):1353–1360PubMedCrossRef
13.
go back to reference Chemaly ER, Yoneyama R, Frangioni JV et al (2005) Tracking stem cells in the cardiovascular system. Trends Cardiovasc Med 15(8):297–302PubMedCrossRef Chemaly ER, Yoneyama R, Frangioni JV et al (2005) Tracking stem cells in the cardiovascular system. Trends Cardiovasc Med 15(8):297–302PubMedCrossRef
14.
go back to reference Tang Y, Shah K, Messerli SM et al (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254PubMedCrossRef Tang Y, Shah K, Messerli SM et al (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254PubMedCrossRef
15.
go back to reference Fowler M, Virostko J, Chen Z et al (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation 79(7):768–776PubMedCrossRef Fowler M, Virostko J, Chen Z et al (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation 79(7):768–776PubMedCrossRef
16.
go back to reference Lu Y, Dang H, Middleton B et al (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther 9(3):428–435PubMedCrossRef Lu Y, Dang H, Middleton B et al (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther 9(3):428–435PubMedCrossRef
17.
go back to reference Rudin M, Rausch M, Stoeckli M (2005) Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods. Mol Imaging Biol 7(1):5–13PubMedCrossRef Rudin M, Rausch M, Stoeckli M (2005) Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods. Mol Imaging Biol 7(1):5–13PubMedCrossRef
18.
go back to reference Ntziachristos V, Tung CH, Bremer C et al (2008) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8(7):757–760CrossRef Ntziachristos V, Tung CH, Bremer C et al (2008) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8(7):757–760CrossRef
19.
go back to reference Tung CH (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76(5):391–403PubMedCrossRef Tung CH (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76(5):391–403PubMedCrossRef
20.
go back to reference Bremer C, Bredow S, Mahmood U et al (2001) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221(2):523–529PubMedCrossRef Bremer C, Bredow S, Mahmood U et al (2001) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221(2):523–529PubMedCrossRef
21.
go back to reference Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572PubMedCrossRef Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572PubMedCrossRef
22.
go back to reference Xiong T, Zhang Z, Liu BF et al (2005) In vivo optical imaging of human adenoid cystic carcinoma cell metastasis. Oral Oncol 41(7):709–715PubMedCrossRef Xiong T, Zhang Z, Liu BF et al (2005) In vivo optical imaging of human adenoid cystic carcinoma cell metastasis. Oral Oncol 41(7):709–715PubMedCrossRef
23.
go back to reference Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12):605–613PubMedCrossRef Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12):605–613PubMedCrossRef
24.
go back to reference Wang L, Jackson WC, Steinbach PA et al (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101(48):16745–16749PubMedCrossRef Wang L, Jackson WC, Steinbach PA et al (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101(48):16745–16749PubMedCrossRef
25.
go back to reference Lin Y, Weissleder R, Tung CH (2002) Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug Chem 13(3):605–610PubMedCrossRef Lin Y, Weissleder R, Tung CH (2002) Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug Chem 13(3):605–610PubMedCrossRef
26.
go back to reference Giepmans BN, Adams SR, Ellisman MH et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224PubMedCrossRef Giepmans BN, Adams SR, Ellisman MH et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224PubMedCrossRef
27.
go back to reference Bergers G, Javaherian K, Lo KM et al (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812PubMedCrossRef Bergers G, Javaherian K, Lo KM et al (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812PubMedCrossRef
28.
go back to reference Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338PubMedCrossRef Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338PubMedCrossRef
29.
go back to reference Jaiswal JK, Mattoussi H, Mauro JM et al (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51PubMedCrossRef Jaiswal JK, Mattoussi H, Mauro JM et al (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51PubMedCrossRef
30.
go back to reference Smith AM, Ruan G, Rhyner MN et al (2006) Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng 34(1):3–14PubMedCrossRef Smith AM, Ruan G, Rhyner MN et al (2006) Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng 34(1):3–14PubMedCrossRef
31.
go back to reference Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544PubMedCrossRef Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544PubMedCrossRef
32.
go back to reference Sosnovik D, Weissleder R (2005) Magnetic resonance and fluorescence based molecular imaging technologies. Prog Drug Res 62:83–115PubMedCrossRef Sosnovik D, Weissleder R (2005) Magnetic resonance and fluorescence based molecular imaging technologies. Prog Drug Res 62:83–115PubMedCrossRef
33.
go back to reference Frank JA, Zywicke H, Jordan EK et al (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9(Suppl 2):S484–S487PubMedCrossRef Frank JA, Zywicke H, Jordan EK et al (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9(Suppl 2):S484–S487PubMedCrossRef
34.
go back to reference Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107(18):2290–2293PubMedCrossRef Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107(18):2290–2293PubMedCrossRef
35.
go back to reference Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499PubMedCrossRef Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499PubMedCrossRef
36.
go back to reference Daldrup-Link HE, Rudelius M, Metz S et al (2004) Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31(9):1312–1321PubMedCrossRef Daldrup-Link HE, Rudelius M, Metz S et al (2004) Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31(9):1312–1321PubMedCrossRef
37.
go back to reference Kircher MF, Allport JR, Graves EE et al (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63(20):6838–6846PubMed Kircher MF, Allport JR, Graves EE et al (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63(20):6838–6846PubMed
38.
go back to reference Thompson M, Wall DM, Hicks RJ et al (2005) In vivo tracking for cell therapies. Q J Nucl Med Mol Imaging 49(4):339–348PubMed Thompson M, Wall DM, Hicks RJ et al (2005) In vivo tracking for cell therapies. Q J Nucl Med Mol Imaging 49(4):339–348PubMed
39.
go back to reference Li C, Wang W, Wu Q et al (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol 33(3):349–358PubMedCrossRef Li C, Wang W, Wu Q et al (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol 33(3):349–358PubMedCrossRef
40.
go back to reference Ponomarev V, Doubrovin M, Serganova I et al (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31(5):740–751PubMedCrossRef Ponomarev V, Doubrovin M, Serganova I et al (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31(5):740–751PubMedCrossRef
41.
go back to reference Modo M, Cash D, Mellodew K et al (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17(2):803–811PubMedCrossRef Modo M, Cash D, Mellodew K et al (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17(2):803–811PubMedCrossRef
42.
go back to reference Vuu K, Xie J, McDonald MA et al (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16(4):995–999PubMedCrossRef Vuu K, Xie J, McDonald MA et al (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16(4):995–999PubMedCrossRef
43.
go back to reference Askenasy N, Farkas DL (2002) Optical imaging of PKH-labeled hematopoietic cells in recipient bone marrow in vivo. Stem Cells 20(6):501–513PubMedCrossRef Askenasy N, Farkas DL (2002) Optical imaging of PKH-labeled hematopoietic cells in recipient bone marrow in vivo. Stem Cells 20(6):501–513PubMedCrossRef
44.
go back to reference Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446PubMedCrossRef Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446PubMedCrossRef
45.
go back to reference Voura EB, Jaiswal JK, Mattoussi H et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998PubMedCrossRef Voura EB, Jaiswal JK, Mattoussi H et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998PubMedCrossRef
46.
go back to reference Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122PubMedCrossRef Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122PubMedCrossRef
47.
go back to reference Hodgetts SI, Beilharz MW, Scalzo AA et al (2000) Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4 and CD8 cells or Nk1.1 cells. Cell Transplant 9(4):489–502PubMed Hodgetts SI, Beilharz MW, Scalzo AA et al (2000) Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4 and CD8 cells or Nk1.1 cells. Cell Transplant 9(4):489–502PubMed
48.
go back to reference Rando TA, Pavlath GK, Blau HM (1995) The fate of myoblasts following transplantation into mature muscle. Exp Cell Res 220(2):383–389PubMedCrossRef Rando TA, Pavlath GK, Blau HM (1995) The fate of myoblasts following transplantation into mature muscle. Exp Cell Res 220(2):383–389PubMedCrossRef
49.
go back to reference Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20PubMedCrossRef Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20PubMedCrossRef
50.
go back to reference Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3):369–377PubMedCrossRef Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3):369–377PubMedCrossRef
51.
go back to reference Askenasy N, Zorina T, Farkas DL et al (2002) Transplanted hematopoietic cells seed in clusters in recipient bone marrow in vivo. Stem Cells 20(4):301–310PubMedCrossRef Askenasy N, Zorina T, Farkas DL et al (2002) Transplanted hematopoietic cells seed in clusters in recipient bone marrow in vivo. Stem Cells 20(4):301–310PubMedCrossRef
52.
go back to reference Cao F, Lin S, Xie X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113(7):1005–1014PubMedCrossRef Cao F, Lin S, Xie X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113(7):1005–1014PubMedCrossRef
53.
go back to reference Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108(7):863–868PubMedCrossRef Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108(7):863–868PubMedCrossRef
54.
go back to reference Ray P, De A, Min JJ et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64(4):1323–1330PubMedCrossRef Ray P, De A, Min JJ et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64(4):1323–1330PubMedCrossRef
55.
go back to reference Zavattini G, Vecchi S, Mitchell G et al (2006) A hyperspectral fluorescence system for 3D in vivo optical imaging. Phys Med Biol 51(8):2029–2043PubMedCrossRef Zavattini G, Vecchi S, Mitchell G et al (2006) A hyperspectral fluorescence system for 3D in vivo optical imaging. Phys Med Biol 51(8):2029–2043PubMedCrossRef
56.
go back to reference Ntziachristos V, Chance B (2001) Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res 3(1):41–46PubMedCrossRef Ntziachristos V, Chance B (2001) Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res 3(1):41–46PubMedCrossRef
57.
58.
go back to reference Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987PubMedCrossRef Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987PubMedCrossRef
59.
go back to reference Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202PubMedCrossRef Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202PubMedCrossRef
60.
go back to reference Cao YA, Bachmann MH, Beilhack A et al (2005) Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 80(1):134–139PubMedCrossRef Cao YA, Bachmann MH, Beilhack A et al (2005) Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 80(1):134–139PubMedCrossRef
61.
go back to reference Brazelton TR, Blau HM (2005) Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23(9):1251–1265PubMedCrossRef Brazelton TR, Blau HM (2005) Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23(9):1251–1265PubMedCrossRef
62.
go back to reference Wang X, Rosol M, Ge S et al (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102(10):3478–3482PubMedCrossRef Wang X, Rosol M, Ge S et al (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102(10):3478–3482PubMedCrossRef
63.
go back to reference Shichinohe H, Kuroda S, Lee JB et al (2004) In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc 13(3):166–175PubMedCrossRef Shichinohe H, Kuroda S, Lee JB et al (2004) In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc 13(3):166–175PubMedCrossRef
64.
go back to reference Shah K, Tung CH, Yang K et al (2004) Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 64(9):3236–3242PubMedCrossRef Shah K, Tung CH, Yang K et al (2004) Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 64(9):3236–3242PubMedCrossRef
65.
go back to reference Costa GL, Sandora MR, Nakajima A et al (2001) Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 167(4):2379–2387PubMed Costa GL, Sandora MR, Nakajima A et al (2001) Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 167(4):2379–2387PubMed
66.
go back to reference Jones OY, Steele A, Jones JM et al (2004) Nonmyeloablative bone marrow transplantation of BXSB lupus mice using fully matched allogeneic donor cells from green fluorescent protein transgenic mice. J Immunol 172(9):5415–5419PubMed Jones OY, Steele A, Jones JM et al (2004) Nonmyeloablative bone marrow transplantation of BXSB lupus mice using fully matched allogeneic donor cells from green fluorescent protein transgenic mice. J Immunol 172(9):5415–5419PubMed
67.
go back to reference Nakajima A, Seroogy CM, Sandora MR et al (2001) Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 107(10):1293–1301PubMedCrossRef Nakajima A, Seroogy CM, Sandora MR et al (2001) Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 107(10):1293–1301PubMedCrossRef
68.
go back to reference Moore A, Grimm J, Han B et al (2004) Tracking the recruitment of diabetogenic CD8 T-cells to the pancreas in real time. Diabetes 53(6):1459–1466PubMedCrossRef Moore A, Grimm J, Han B et al (2004) Tracking the recruitment of diabetogenic CD8 T-cells to the pancreas in real time. Diabetes 53(6):1459–1466PubMedCrossRef
69.
go back to reference Simon GH, Daldrup-Link HE, Kau J et al (2006) Optical imaging of experimental arthritis using allogeneic leukocytes labeled with a near-infrared fluorescent probe. Eur J Nucl Med Mol Imaging 33(9):998–1006PubMedCrossRef Simon GH, Daldrup-Link HE, Kau J et al (2006) Optical imaging of experimental arthritis using allogeneic leukocytes labeled with a near-infrared fluorescent probe. Eur J Nucl Med Mol Imaging 33(9):998–1006PubMedCrossRef
Metadata
Title
Cell tracking with optical imaging
Authors
Elizabeth J. Sutton
Tobias D. Henning
Bernd J. Pichler
Christoph Bremer
Heike E. Daldrup-Link
Publication date
01-10-2008
Publisher
Springer-Verlag
Published in
European Radiology / Issue 10/2008
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-008-0984-z

Other articles of this Issue 10/2008

European Radiology 10/2008 Go to the issue