Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 11/2022

Open Access 10-05-2022 | Glioma | Guidelines

Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0

Authors: Arnoldo Piccardo, Nathalie L. Albert, Lise Borgwardt, Frederic H. Fahey, Darren Hargrave, Norbert Galldiks, Nina Jehanno, Lars Kurch, Ian Law, Ruth Lim, Egesta Lopci, Lisbeth Marner, Giovanni Morana, Tina Young Poussaint, Victor J. Seghers, Barry L. Shulkin, Katherine E. Warren, Tatjana Traub-Weidinger, Pietro Zucchetta

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 11/2022

Login to get access

Abstract

Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible.
Literature
1.
go back to reference Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64:83–103. PubMedCrossRef Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64:83–103. PubMedCrossRef
3.
go back to reference Sturm D, Pfister SM, Jones DTW. Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. J Clin Oncol. 2017;35:2370–7.PubMedCrossRef Sturm D, Pfister SM, Jones DTW. Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. J Clin Oncol. 2017;35:2370–7.PubMedCrossRef
4.
go back to reference Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28:3061–8.PubMedPubMedCentralCrossRef Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28:3061–8.PubMedPubMedCentralCrossRef
5.
go back to reference Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun Acta Neuropathologica Communications. 2020;8:1–22. Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun Acta Neuropathologica Communications. 2020;8:1–22.
6.
go back to reference Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. the 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20 (Springer Berlin Heidelberg).PubMedCrossRef Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. the 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20 (Springer Berlin Heidelberg).PubMedCrossRef
7.
go back to reference Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo NG. Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol. 2015;33:2986–98.PubMedPubMedCentralCrossRef Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo NG. Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol. 2015;33:2986–98.PubMedPubMedCentralCrossRef
8.
go back to reference Collins KL, Pollack IF. Pediatric low-grade Gliomas. Cancers (Basel). 2020;12:1152.CrossRef Collins KL, Pollack IF. Pediatric low-grade Gliomas. Cancers (Basel). 2020;12:1152.CrossRef
9.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, The, et al. WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;2021:23. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, The, et al. WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;2021:23.
10.
go back to reference Ramaglia A, Tortora D, Mankad K, Lequin M, Severino M, D’Arco F, et al. Role of diffusion weighted imaging for differentiating cerebral pilocytic astrocytoma and ganglioglioma BRAF V600E-mutant from wild type. Neuroradiology. 2020;62:71–80.PubMedCrossRef Ramaglia A, Tortora D, Mankad K, Lequin M, Severino M, D’Arco F, et al. Role of diffusion weighted imaging for differentiating cerebral pilocytic astrocytoma and ganglioglioma BRAF V600E-mutant from wild type. Neuroradiology. 2020;62:71–80.PubMedCrossRef
11.
go back to reference Rodriguez FJ, Lim KS, Bowers D, Eberhart CG. Pathologic and molecular advances in peadiatrics low grade astrocytoma. Annu Rev Pathol. 2013;8:361–79.PubMedCrossRef Rodriguez FJ, Lim KS, Bowers D, Eberhart CG. Pathologic and molecular advances in peadiatrics low grade astrocytoma. Annu Rev Pathol. 2013;8:361–79.PubMedCrossRef
12.
go back to reference Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res. 2011;17:4790–8.PubMedCrossRef Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res. 2011;17:4790–8.PubMedCrossRef
13.
go back to reference Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, Gilbert MR, Yang C. IDHmutation in glioma: molecular mechanisms and potential therapeutic targets. Br JCancer. 2020;122:1580–9.CrossRef Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, Gilbert MR, Yang C. IDHmutation in glioma: molecular mechanisms and potential therapeutic targets. Br JCancer. 2020;122:1580–9.CrossRef
14.
go back to reference Cohen KJ, Jabado N, Grill J. Diffuse intrinsic pontine gliomas - current management and new biologic insights. Is there a glimmer of hope? Neuro Oncol. 2017;19:1025–34.PubMedPubMedCentralCrossRef Cohen KJ, Jabado N, Grill J. Diffuse intrinsic pontine gliomas - current management and new biologic insights. Is there a glimmer of hope? Neuro Oncol. 2017;19:1025–34.PubMedPubMedCentralCrossRef
15.
go back to reference Pollack IF, Hamilton RL, James CD, Finkelstein SD, Burnham J, Yates AJ, et al. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J Neurosurg Pediatr. 2006;105:418–24.CrossRef Pollack IF, Hamilton RL, James CD, Finkelstein SD, Burnham J, Yates AJ, et al. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J Neurosurg Pediatr. 2006;105:418–24.CrossRef
16.
go back to reference Braunstein S, Raleigh D, Bindra R, Mueller S, Haas-Kogan D. Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol. 2017;134:541–9.PubMedCrossRef Braunstein S, Raleigh D, Bindra R, Mueller S, Haas-Kogan D. Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol. 2017;134:541–9.PubMedCrossRef
17.
18.
go back to reference Rizzo D, Ruggiero A, Martini M, Rizzo V, Maurizi P, Riccardi R. Molecular biology in pediatric high-grade glioma: impact on prognosis and treatment. Biomed Res Int. 2015;2015:215135.PubMedPubMedCentralCrossRef Rizzo D, Ruggiero A, Martini M, Rizzo V, Maurizi P, Riccardi R. Molecular biology in pediatric high-grade glioma: impact on prognosis and treatment. Biomed Res Int. 2015;2015:215135.PubMedPubMedCentralCrossRef
19.
go back to reference Farouk Sait S, Walsh MF, Karajannis MA. Genetic syndromes predisposing topediatric brain tumors. Neurooncol Pract. 2021;8:375–90.PubMedPubMedCentral Farouk Sait S, Walsh MF, Karajannis MA. Genetic syndromes predisposing topediatric brain tumors. Neurooncol Pract. 2021;8:375–90.PubMedPubMedCentral
20.
go back to reference Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes—a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet Part A. 2017;173:1017–37.PubMedCrossRef Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes—a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet Part A. 2017;173:1017–37.PubMedCrossRef
21.
go back to reference Pollack IF. Multidisciplinary management of childhood brain tumors: a reviewof outcomes, recent advances, and challenges. J Neurosurg Pediatr. 2011;8:135–48.PubMedCrossRef Pollack IF. Multidisciplinary management of childhood brain tumors: a reviewof outcomes, recent advances, and challenges. J Neurosurg Pediatr. 2011;8:135–48.PubMedCrossRef
22.
23.
go back to reference Erker C, Tamrazi B, Poussaint TY, Mueller S, Mata-Mbemba D, Franceschi E, et al. Response assessment in paediatric high-grade glioma: recommendations from the response assessment in pediatric neuro-oncology (RAPNO) working group. Lancet Oncol. 2020;21:e317–29.PubMedCrossRef Erker C, Tamrazi B, Poussaint TY, Mueller S, Mata-Mbemba D, Franceschi E, et al. Response assessment in paediatric high-grade glioma: recommendations from the response assessment in pediatric neuro-oncology (RAPNO) working group. Lancet Oncol. 2020;21:e317–29.PubMedCrossRef
24.
go back to reference Fangusaro J, Witt O, Hernáiz Driever P, Bag AK, de Blank P, Kadom N, et al. Response assessment in paediatric low-grade glioma: recommendations from the response assessment in pediatric neuro-oncology (RAPNO) working group. Lancet Oncol. 2020;21:e305–16.PubMedCrossRef Fangusaro J, Witt O, Hernáiz Driever P, Bag AK, de Blank P, Kadom N, et al. Response assessment in paediatric low-grade glioma: recommendations from the response assessment in pediatric neuro-oncology (RAPNO) working group. Lancet Oncol. 2020;21:e305–16.PubMedCrossRef
25.
go back to reference Reardon DA, Ballman KV, Buckner JC, Chang SM, Ellingson BM. Impact of imaging measurements on response assessment in glioblastoma clinical trials. Neuro Oncol. 2014;16:vii24–35.PubMedPubMedCentralCrossRef Reardon DA, Ballman KV, Buckner JC, Chang SM, Ellingson BM. Impact of imaging measurements on response assessment in glioblastoma clinical trials. Neuro Oncol. 2014;16:vii24–35.PubMedPubMedCentralCrossRef
26.
go back to reference Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-Oncology: A report of the RANO working group. Lancet Oncol. 2015;16:e534–42.PubMedPubMedCentralCrossRef Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-Oncology: A report of the RANO working group. Lancet Oncol. 2015;16:e534–42.PubMedPubMedCentralCrossRef
27.
go back to reference Piccardo A, Tortora D, Mascelli S, Severino M, Piatelli G, Consales A, et al. Advanced MR imaging and 18F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging. 2019;46:1685–94.PubMedCrossRef Piccardo A, Tortora D, Mascelli S, Severino M, Piatelli G, Consales A, et al. Advanced MR imaging and 18F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging. 2019;46:1685–94.PubMedCrossRef
28.
go back to reference Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM / EANO / RANO practice guidelines / SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18 F ] FDG : version 1.0. Eur J Nucl Med Mol Imaging. 2019;46:540–57.PubMedCrossRef Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM / EANO / RANO practice guidelines / SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18 F ] FDG : version 1.0. Eur J Nucl Med Mol Imaging. 2019;46:540–57.PubMedCrossRef
29.
go back to reference Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18:1199–208.PubMedPubMedCentralCrossRef Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18:1199–208.PubMedPubMedCentralCrossRef
30.
go back to reference Peet AC, Arvanitis TN, Leach MO, Waldman AD. Functional imaging in adult and paediatric brain tumours. Nat Rev Clin Oncol. 2012;9:700–11.PubMedCrossRef Peet AC, Arvanitis TN, Leach MO, Waldman AD. Functional imaging in adult and paediatric brain tumours. Nat Rev Clin Oncol. 2012;9:700–11.PubMedCrossRef
31.
go back to reference Chen W, Silverman DHS, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: Comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47:904–11.PubMed Chen W, Silverman DHS, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: Comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47:904–11.PubMed
32.
go back to reference Wilson J, Parker JA, Yester MV, Daube-Witherspoon ME, Todd-Pokropek AE, Royal HJ. Procedure guideline for general imaging: 1.0. J Nucl Med. 1996;37:2087–92. Wilson J, Parker JA, Yester MV, Daube-Witherspoon ME, Todd-Pokropek AE, Royal HJ. Procedure guideline for general imaging: 1.0. J Nucl Med. 1996;37:2087–92.
33.
go back to reference Fragoso Costa P, Santos A, Testanera G. An insight into the EANM technologist committee benchmark document on nuclear medicine technologists’ competencies. Eur J Nucl Med Mol Imaging. 2017;44:1604–6.PubMedCrossRef Fragoso Costa P, Santos A, Testanera G. An insight into the EANM technologist committee benchmark document on nuclear medicine technologists’ competencies. Eur J Nucl Med Mol Imaging. 2017;44:1604–6.PubMedCrossRef
34.
go back to reference Performance and responsibility guidelines for the nuclear medicine technologist: 1998 revision. Society of Nuclear Medicine-Technologists. J Nucl Med Technol. 1998;26:45-9 Performance and responsibility guidelines for the nuclear medicine technologist: 1998 revision. Society of Nuclear Medicine-Technologists. J Nucl Med Technol. 1998;26:45-9
37.
go back to reference Busemann Sokole E, Płachcínska A, Britten A, Lyra Georgosopoulou M, Tindale W, Klett R. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37:662–71.PubMedCrossRef Busemann Sokole E, Płachcínska A, Britten A, Lyra Georgosopoulou M, Tindale W, Klett R. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37:662–71.PubMedCrossRef
38.
go back to reference Boellaard R, Rausch I, Beyer T, Delso G, Yaqub M, Quick HH, et al. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems. Med Phys. 2015;42:5961–9.PubMedCrossRef Boellaard R, Rausch I, Beyer T, Delso G, Yaqub M, Quick HH, et al. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems. Med Phys. 2015;42:5961–9.PubMedCrossRef
39.
go back to reference Valladares A, Ahangari S, Beyer T, Boellaard R, Chalampalakis Z, Comtat C, et al. Clinically valuable quality control for PET/MRI systems: consensus recommendation from the HYBRID consortium. Front Phys. 2019;7. Valladares A, Ahangari S, Beyer T, Boellaard R, Chalampalakis Z, Comtat C, et al. Clinically valuable quality control for PET/MRI systems: consensus recommendation from the HYBRID consortium. Front Phys. 2019;7.
40.
go back to reference Keller SH, Jakoby B, Svalling S, Kjaer A, Højgaard L, Klausen TL. Cross-calibration of the Siemens MMR: easily acquired accurate pet phantom measurements, long-term stability and reproducibility. EJNMMI Phys. 2016;3:11.PubMedPubMedCentralCrossRef Keller SH, Jakoby B, Svalling S, Kjaer A, Højgaard L, Klausen TL. Cross-calibration of the Siemens MMR: easily acquired accurate pet phantom measurements, long-term stability and reproducibility. EJNMMI Phys. 2016;3:11.PubMedPubMedCentralCrossRef
43.
go back to reference Gatidis S, Schmidt H, la Fougère C, Nikolaou K, Schwenzer NF, Schäfer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:2283–9.PubMedCrossRef Gatidis S, Schmidt H, la Fougère C, Nikolaou K, Schwenzer NF, Schäfer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:2283–9.PubMedCrossRef
44.
go back to reference Zucchetta P, Branchini M, Zorz A, Bodanza V, Cecchin D, Paiusco M, et al. Quantitative analysis of image metrics for reduced and standard dose pediatric 18F-FDG PET/MRI examinations. Br J Radiol. 2019;92:20180438.PubMedPubMedCentralCrossRef Zucchetta P, Branchini M, Zorz A, Bodanza V, Cecchin D, Paiusco M, et al. Quantitative analysis of image metrics for reduced and standard dose pediatric 18F-FDG PET/MRI examinations. Br J Radiol. 2019;92:20180438.PubMedPubMedCentralCrossRef
45.
go back to reference Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, et al. SNMMI Procedure standard/EANM practice guideline on pediatric 18F-FDG PET/CT for oncology 1.0. J Nucl Med. 2021;62:99–110.PubMedPubMedCentralCrossRef Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, et al. SNMMI Procedure standard/EANM practice guideline on pediatric 18F-FDG PET/CT for oncology 1.0. J Nucl Med. 2021;62:99–110.PubMedPubMedCentralCrossRef
46.
go back to reference Borgwardt L, Larsen HJ, Pedersen K, Højgaard L. Practical use and implementation of PET in children in a hospital PET centre. Eur J Nucl Med Mol Imaging. 2003;30:1389–97.PubMedCrossRef Borgwardt L, Larsen HJ, Pedersen K, Højgaard L. Practical use and implementation of PET in children in a hospital PET centre. Eur J Nucl Med Mol Imaging. 2003;30:1389–97.PubMedCrossRef
47.
go back to reference Hoffman JM, Hanson MW, Friedman HS, Hockenberger BM, Oakes WJ, Halperin EC, et al. Fdg-pet in pediatric posterior fossa brain tumors. J Comput Assist Tomogr. 1992;16:62–8.PubMedCrossRef Hoffman JM, Hanson MW, Friedman HS, Hockenberger BM, Oakes WJ, Halperin EC, et al. Fdg-pet in pediatric posterior fossa brain tumors. J Comput Assist Tomogr. 1992;16:62–8.PubMedCrossRef
48.
go back to reference Brown WD, Oakes TR, DeJesus OT, Taylor MD, Roberts AD, Nickles RJ, et al. Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment. J Nucl Med. 1998;39:1884–91.PubMed Brown WD, Oakes TR, DeJesus OT, Taylor MD, Roberts AD, Nickles RJ, et al. Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment. J Nucl Med. 1998;39:1884–91.PubMed
49.
go back to reference Parikh N, Friedman KP, Shah SN, Chandarana H. Practical guide for implementing hybrid PET/MR clinical service: lessons learned from our experience. Abdom Imaging. 2015;40:1366–73.PubMedPubMedCentralCrossRef Parikh N, Friedman KP, Shah SN, Chandarana H. Practical guide for implementing hybrid PET/MR clinical service: lessons learned from our experience. Abdom Imaging. 2015;40:1366–73.PubMedPubMedCentralCrossRef
50.
go back to reference Lollis SS, Mamourian AC, Vaccaro TJ, Duhaime AC. Programmable CSF shunt valves: Radiographic identification and interpretation. Am J Neuroradiol. 2010;31:1343–6.PubMedPubMedCentralCrossRef Lollis SS, Mamourian AC, Vaccaro TJ, Duhaime AC. Programmable CSF shunt valves: Radiographic identification and interpretation. Am J Neuroradiol. 2010;31:1343–6.PubMedPubMedCentralCrossRef
51.
go back to reference Borgwardt L, Højgaard L, Carstensen H, Laursen H, Nowak M, Thomsen C, et al. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: A study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol. 2005;23:3030–7.PubMedCrossRef Borgwardt L, Højgaard L, Carstensen H, Laursen H, Nowak M, Thomsen C, et al. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: A study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol. 2005;23:3030–7.PubMedCrossRef
52.
go back to reference Utriainen M, Metsähonkala L, Salmi TT, Utriainen T, Kalimo H, Pihko H, et al. Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer. 2002;95:1376–86.PubMedCrossRef Utriainen M, Metsähonkala L, Salmi TT, Utriainen T, Kalimo H, Pihko H, et al. Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer. 2002;95:1376–86.PubMedCrossRef
53.
go back to reference Zukotynski KA, Fahey FH, Kocak M, Alavi A, Wong TZ, Treves ST, et al. Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the pediatric brain tumor consortium. J Nucl Med. 2011;52:188–95.PubMedCrossRef Zukotynski KA, Fahey FH, Kocak M, Alavi A, Wong TZ, Treves ST, et al. Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the pediatric brain tumor consortium. J Nucl Med. 2011;52:188–95.PubMedCrossRef
54.
go back to reference Kruer MC, Kaplan AM, Etzl MM, Carpentieri DF, Dickman PS, Chen K, et al. The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol. 2009;95:239–45.PubMedCrossRef Kruer MC, Kaplan AM, Etzl MM, Carpentieri DF, Dickman PS, Chen K, et al. The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol. 2009;95:239–45.PubMedCrossRef
55.
go back to reference Zukotynski K, Fahey F, Kocak M, Kun L, Boyett J, Fouladi M, et al. 18F-FDG PET and MR imaging associations across a spectrum of pediatric brain tumors: a report from the Pediatric Brain Tumor Consortium. J Nucl Med. 2014;55:1473–80.PubMedCrossRef Zukotynski K, Fahey F, Kocak M, Kun L, Boyett J, Fouladi M, et al. 18F-FDG PET and MR imaging associations across a spectrum of pediatric brain tumors: a report from the Pediatric Brain Tumor Consortium. J Nucl Med. 2014;55:1473–80.PubMedCrossRef
56.
go back to reference Pirotte BJM, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M. Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg. 2007;107:392–9.PubMed Pirotte BJM, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M. Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg. 2007;107:392–9.PubMed
57.
go back to reference Hipp SJ, Steffen-Smith EA, Patronas N, Herscovitch P, Solomon JM, Bent RS, et al. Molecular imaging of pediatric brain tumors: comparison of tumor metabolism using 18F-FDG-PET and MRSI. J Neurooncol. 2012;109:521–7.PubMedPubMedCentralCrossRef Hipp SJ, Steffen-Smith EA, Patronas N, Herscovitch P, Solomon JM, Bent RS, et al. Molecular imaging of pediatric brain tumors: comparison of tumor metabolism using 18F-FDG-PET and MRSI. J Neurooncol. 2012;109:521–7.PubMedPubMedCentralCrossRef
58.
go back to reference O’Tuama LA, Phillips PC, Strauss LC, Carson BC, Uno Y, Smith QR, et al. Two-phase [11C]l-methionine PET in childhood brain tumors. Pediatr Neurol. 1990;6:163–70.PubMedCrossRef O’Tuama LA, Phillips PC, Strauss LC, Carson BC, Uno Y, Smith QR, et al. Two-phase [11C]l-methionine PET in childhood brain tumors. Pediatr Neurol. 1990;6:163–70.PubMedCrossRef
59.
go back to reference Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A, et al. Methyl-[11C]-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging. 2003;30:868–73.PubMedCrossRef Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A, et al. Methyl-[11C]-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging. 2003;30:868–73.PubMedCrossRef
60.
go back to reference Galldiks N, Kracht LW, Berthold F, Miletic H, Klein JC, Herholz K, et al. [11C]-L-Methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol. 2010;96:231–9.PubMedCrossRef Galldiks N, Kracht LW, Berthold F, Miletic H, Klein JC, Herholz K, et al. [11C]-L-Methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol. 2010;96:231–9.PubMedCrossRef
61.
go back to reference Pirotte BJM, Lubansu A, Massager N, Wikler D, Van Bogaert P, Levivier M, et al. Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr. 2010;5:486–99.PubMedCrossRef Pirotte BJM, Lubansu A, Massager N, Wikler D, Van Bogaert P, Levivier M, et al. Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr. 2010;5:486–99.PubMedCrossRef
62.
go back to reference Preuss M, Werner P, Barthel H, Nestler U, Christiansen H, Hirsch FW, et al. Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Child’s Nerv Syst. 2014;30:1399–403.CrossRef Preuss M, Werner P, Barthel H, Nestler U, Christiansen H, Hirsch FW, et al. Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Child’s Nerv Syst. 2014;30:1399–403.CrossRef
63.
go back to reference Bag AK, Wing MN, Sabin ND, Hwang SN, Armstrong GT, Han Y, et al. [11 C]-methionine PET for identification of pediatric high-grade glioma recurrence. J Nucl Med. 2021;63(5):664–71.PubMed Bag AK, Wing MN, Sabin ND, Hwang SN, Armstrong GT, Han Y, et al. [11 C]-methionine PET for identification of pediatric high-grade glioma recurrence. J Nucl Med. 2021;63(5):664–71.PubMed
64.
go back to reference Singhal T, Tanjore KN, Martin PJ, Bal C, Mantil JC. 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med. 2012;53:1709–15.PubMedCrossRef Singhal T, Tanjore KN, Martin PJ, Bal C, Mantil JC. 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med. 2012;53:1709–15.PubMedCrossRef
65.
go back to reference Lucas JT, Serrano N, Kim H, Li X, Snyder SE, Hwang S, et al. 11C-Methionine positron emission tomography delineates non-contrast enhancing tumor regions at high risk for recurrence in pediatric high-grade glioma. J Neurooncol. 2017;132:163–70.PubMedPubMedCentralCrossRef Lucas JT, Serrano N, Kim H, Li X, Snyder SE, Hwang S, et al. 11C-Methionine positron emission tomography delineates non-contrast enhancing tumor regions at high risk for recurrence in pediatric high-grade glioma. J Neurooncol. 2017;132:163–70.PubMedPubMedCentralCrossRef
66.
go back to reference Tinkle CL, Duncan EC, Doubrovin M, Han Y, Li Y, Kim H, et al. Evaluation of 11 C-methionine PET and anatomic MRI associations in diffuse intrinsic pontine glioma. J Nucl Med. 2019;60:312–9.PubMedPubMedCentralCrossRef Tinkle CL, Duncan EC, Doubrovin M, Han Y, Li Y, Kim H, et al. Evaluation of 11 C-methionine PET and anatomic MRI associations in diffuse intrinsic pontine glioma. J Nucl Med. 2019;60:312–9.PubMedPubMedCentralCrossRef
67.
go back to reference Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33:287–94.PubMedCrossRef Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33:287–94.PubMedCrossRef
68.
go back to reference Grosu AL, Astner ST, Riedel E, Nieder C, Wiedenmann N, Heinemann F, et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L- tyrosine (FET)- and L-[methyl- 11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys. 2011;81:1049–58.PubMedCrossRef Grosu AL, Astner ST, Riedel E, Nieder C, Wiedenmann N, Heinemann F, et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L- tyrosine (FET)- and L-[methyl- 11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys. 2011;81:1049–58.PubMedCrossRef
69.
go back to reference Misch M, Guggemos A, Driever PH, Koch A, Grosse F, Steffen IG, et al. 18F-FET-PET guided surgical biopsy and resection in children and adolescence with brain tumors. Child’s Nerv Syst. 2015;31:261–7.CrossRef Misch M, Guggemos A, Driever PH, Koch A, Grosse F, Steffen IG, et al. 18F-FET-PET guided surgical biopsy and resection in children and adolescence with brain tumors. Child’s Nerv Syst. 2015;31:261–7.CrossRef
70.
go back to reference Messing-Jünger AM, Floeth FW, Pauleit D, Reifenberger G, Willing R, Gärtner J, et al. Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Child’s Nerv Syst. 2002;18:445–9.CrossRef Messing-Jünger AM, Floeth FW, Pauleit D, Reifenberger G, Willing R, Gärtner J, et al. Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Child’s Nerv Syst. 2002;18:445–9.CrossRef
71.
go back to reference Marner L, Lundemann M, Sehested A, Nysom K, Borgwardt L, Mathiasen R, et al. Diagnostic accuracy and clinical impact of [18F]FET PET in childhood CNS tumors. Neuro Oncol. 2021;1(23):2107–16.CrossRef Marner L, Lundemann M, Sehested A, Nysom K, Borgwardt L, Mathiasen R, et al. Diagnostic accuracy and clinical impact of [18F]FET PET in childhood CNS tumors. Neuro Oncol. 2021;1(23):2107–16.CrossRef
72.
go back to reference Dunkl V, Cleff C, Stoffels G, Judov N, Sarikaya-Seiwert S, Law I, et al. The usefulness of dynamic O-(2–18F-fluoroethyl)-L-tyrosine PET in the clinical evaluation of brain tumors in children and adolescents. J Nucl Med. 2015;56:88–92.PubMedCrossRef Dunkl V, Cleff C, Stoffels G, Judov N, Sarikaya-Seiwert S, Law I, et al. The usefulness of dynamic O-(2–18F-fluoroethyl)-L-tyrosine PET in the clinical evaluation of brain tumors in children and adolescents. J Nucl Med. 2015;56:88–92.PubMedCrossRef
74.
go back to reference Marner L, Nysom K, Sehested A, Borgwardt L, Mathiasen R, Henriksen OM, et al. Early postoperative 18F-FET PET/MRI for pediatric brain and spinal cord tumors. J Nucl Med. 2019;60:1053–8.PubMedCrossRef Marner L, Nysom K, Sehested A, Borgwardt L, Mathiasen R, Henriksen OM, et al. Early postoperative 18F-FET PET/MRI for pediatric brain and spinal cord tumors. J Nucl Med. 2019;60:1053–8.PubMedCrossRef
75.
go back to reference Youland RS, Kitange GJ, Peterson TE, Pafundi DH, Ramiscal JA, Pokorny JL, et al. The role of LAT1 in 18F-DOPA uptake in malignant gliomas. J Neurooncol. 2013;111:11–8.PubMedCrossRef Youland RS, Kitange GJ, Peterson TE, Pafundi DH, Ramiscal JA, Pokorny JL, et al. The role of LAT1 in 18F-DOPA uptake in malignant gliomas. J Neurooncol. 2013;111:11–8.PubMedCrossRef
76.
go back to reference Dadone-Montaudié B, Ambrosetti D, Dufour M, Darcourt J, Almairac F, Coyne J, et al. [18F] FDOPA standardized uptake values of brain tumors are not exclusively dependent on LAT1 expression. PLoS One. 2017;12:e0184625.PubMedPubMedCentralCrossRef Dadone-Montaudié B, Ambrosetti D, Dufour M, Darcourt J, Almairac F, Coyne J, et al. [18F] FDOPA standardized uptake values of brain tumors are not exclusively dependent on LAT1 expression. PLoS One. 2017;12:e0184625.PubMedPubMedCentralCrossRef
77.
go back to reference Morana G, Tortora D, Bottoni G, Puntoni M, Piatelli G, Garibotto F, et al. Correlation of multimodal 18F-DOPA PET and conventional MRI with treatment response and survival in children with diffuse intrinsic pontine gliomas. Theranostics. 2020;10:11881–91.PubMedPubMedCentralCrossRef Morana G, Tortora D, Bottoni G, Puntoni M, Piatelli G, Garibotto F, et al. Correlation of multimodal 18F-DOPA PET and conventional MRI with treatment response and survival in children with diffuse intrinsic pontine gliomas. Theranostics. 2020;10:11881–91.PubMedPubMedCentralCrossRef
78.
go back to reference Obara-Michlewska M, Szeliga M. Targeting glutamine addiction in gliomas. Cancers (Basel). 2020;29(12):310.CrossRef Obara-Michlewska M, Szeliga M. Targeting glutamine addiction in gliomas. Cancers (Basel). 2020;29(12):310.CrossRef
79.
go back to reference Chi AS, Tarapore RS, Hall MD, Shonka N, Gardner S, Umemura Y, et al. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol. 2019;145:97–105.PubMedPubMedCentralCrossRef Chi AS, Tarapore RS, Hall MD, Shonka N, Gardner S, Umemura Y, et al. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol. 2019;145:97–105.PubMedPubMedCentralCrossRef
80.
go back to reference Caragher SP, Shireman JM, Huang M, Miska J, Atashi F, Baisiwala S, et al. Activation of dopamine receptor 2 prompts transcriptomic and metabolic plasticity in glioblastoma. J Neurosci. 2019;39:1982–93.PubMedPubMedCentralCrossRef Caragher SP, Shireman JM, Huang M, Miska J, Atashi F, Baisiwala S, et al. Activation of dopamine receptor 2 prompts transcriptomic and metabolic plasticity in glioblastoma. J Neurosci. 2019;39:1982–93.PubMedPubMedCentralCrossRef
81.
go back to reference Morana G, Piccardo A, Milanaccio C, Puntoni M, Nozza P, Cama A, et al. Value of 18F–3,4-dihydroxyphenylalanine pet/mr image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med. 2014;55:718–23.PubMedCrossRef Morana G, Piccardo A, Milanaccio C, Puntoni M, Nozza P, Cama A, et al. Value of 18F–3,4-dihydroxyphenylalanine pet/mr image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med. 2014;55:718–23.PubMedCrossRef
82.
go back to reference Morana G, Piccardo A, Puntoni M, Nozza P, Cama A, Raso A, et al. Diagnostic and prognostic value of 18F-DOPA PET and 1H-MR spectroscopy in pediatric supratentorial infiltrative gliomas: a comparative study. Neuro Oncol. 2015;17:1637–47.PubMedPubMedCentralCrossRef Morana G, Piccardo A, Puntoni M, Nozza P, Cama A, Raso A, et al. Diagnostic and prognostic value of 18F-DOPA PET and 1H-MR spectroscopy in pediatric supratentorial infiltrative gliomas: a comparative study. Neuro Oncol. 2015;17:1637–47.PubMedPubMedCentralCrossRef
83.
go back to reference Morana G, Piccardo A, Tortora D, Puntoni M, Severino M, Nozza P, et al. Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F–DOPA PET. Eur J Nucl Med Mol Imaging. 2017;44:2084–93.PubMedCrossRef Morana G, Piccardo A, Tortora D, Puntoni M, Severino M, Nozza P, et al. Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F–DOPA PET. Eur J Nucl Med Mol Imaging. 2017;44:2084–93.PubMedCrossRef
84.
go back to reference Morana G, Piccardo A, Garrè ML, Nozza P, Consales A, Rossi A. Multimodal magnetic resonance imaging and18F-L- dihydroxyphenylalanine positron emission tomography in early characterization of pseudoresponse and nonenhancing tumor progression in a pediatric patient with malignant transformation of ganglioglioma treated with bevacizumab. J Clin Oncol. 2013;31:e1-5.PubMedCrossRef Morana G, Piccardo A, Garrè ML, Nozza P, Consales A, Rossi A. Multimodal magnetic resonance imaging and18F-L- dihydroxyphenylalanine positron emission tomography in early characterization of pseudoresponse and nonenhancing tumor progression in a pediatric patient with malignant transformation of ganglioglioma treated with bevacizumab. J Clin Oncol. 2013;31:e1-5.PubMedCrossRef
85.
go back to reference Gauvain K, Ponisio MR, Barone A, Grimaldi M, Parent E, Leeds H, et al. 18F-FDOPA PET/MRI for monitoring early response to bevacizumab in children with recurrent brain tumors. Neuro-Oncology Pract. 2018;5:28–36.CrossRef Gauvain K, Ponisio MR, Barone A, Grimaldi M, Parent E, Leeds H, et al. 18F-FDOPA PET/MRI for monitoring early response to bevacizumab in children with recurrent brain tumors. Neuro-Oncology Pract. 2018;5:28–36.CrossRef
86.
go back to reference Morana G, Bottoni G, Mancardi MM, Verrico A, Piccardo A. Seizure-induced increased 18F-DOPA uptake in a child with diffuse astrocytoma and transient brain MRI abnormalities related to status epilepticus. Clin Nucl Med. 2018;43:e149–50.PubMedCrossRef Morana G, Bottoni G, Mancardi MM, Verrico A, Piccardo A. Seizure-induced increased 18F-DOPA uptake in a child with diffuse astrocytoma and transient brain MRI abnormalities related to status epilepticus. Clin Nucl Med. 2018;43:e149–50.PubMedCrossRef
87.
go back to reference Gillings N, Hjelstuen O, Ballinger J, Behe M, Decristoforo C, Elsinga P, et al. Guideline on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. EJNMMI Radiopharm Chem; 2021;6:8 Gillings N, Hjelstuen O, Ballinger J, Behe M, Decristoforo C, Elsinga P, et al. Guideline on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. EJNMMI Radiopharm Chem; 2021;6:8
88.
go back to reference Treves ST, Gelfand MJ, Fahey FH, Parisi MT. update of the North American consensus guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med. 2016;2016:57. Treves ST, Gelfand MJ, Fahey FH, Parisi MT. update of the North American consensus guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med. 2016;2016:57.
90.
go back to reference Phi JH, Paeng JC, Lee HS, Wang KC, Cho BK, Lee JY, et al. Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine pet. J Nucl Med. 2010;51:728–34.PubMedCrossRef Phi JH, Paeng JC, Lee HS, Wang KC, Cho BK, Lee JY, et al. Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine pet. J Nucl Med. 2010;51:728–34.PubMedCrossRef
91.
go back to reference Kwatra NS, Lim R, Gee MS, States LJ, Vossough A, Lee EY. PET/MR imaging: current updates on pediatric applications. Magn Reson Imaging Clin N Am. 2019;27:387–407.PubMedCrossRef Kwatra NS, Lim R, Gee MS, States LJ, Vossough A, Lee EY. PET/MR imaging: current updates on pediatric applications. Magn Reson Imaging Clin N Am. 2019;27:387–407.PubMedCrossRef
92.
go back to reference Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.PubMedPubMedCentralCrossRef Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.PubMedPubMedCentralCrossRef
93.
go back to reference Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.PubMedCrossRef Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.PubMedCrossRef
94.
go back to reference Ladefoged CN, Marner L, Hindsholm A, Law I, Højgaard L, Andersen FL. Deep learning based attenuation correction of PET/MRI in pediatric brain tumor patients: evaluation in a clinical setting. Front Neurosci. 2019;7(12):1005.CrossRef Ladefoged CN, Marner L, Hindsholm A, Law I, Højgaard L, Andersen FL. Deep learning based attenuation correction of PET/MRI in pediatric brain tumor patients: evaluation in a clinical setting. Front Neurosci. 2019;7(12):1005.CrossRef
95.
go back to reference Ladefoged CN, Andersen FL, Kjær A, Højgaard L, Law I. RESOLUTE PET/MRI attenuation correction for O-(2–18F-fluoroethyl)-L-tyrosine (FET) in brain tumor patients with metal implants. Front Neurosci. 2017;11:453.PubMedPubMedCentralCrossRef Ladefoged CN, Andersen FL, Kjær A, Højgaard L, Law I. RESOLUTE PET/MRI attenuation correction for O-(2–18F-fluoroethyl)-L-tyrosine (FET) in brain tumor patients with metal implants. Front Neurosci. 2017;11:453.PubMedPubMedCentralCrossRef
96.
go back to reference Morana G, Puntoni M, Garrè ML, Massollo M, Lopci E, Naseri M, et al. Ability of 18F-DOPA PET/CT and fused 18F-DOPA PET/MRI to assess striatal involvement in paediatric glioma. Eur J Nucl Med Mol Imaging. 2016;43:1664–72.PubMedCrossRef Morana G, Puntoni M, Garrè ML, Massollo M, Lopci E, Naseri M, et al. Ability of 18F-DOPA PET/CT and fused 18F-DOPA PET/MRI to assess striatal involvement in paediatric glioma. Eur J Nucl Med Mol Imaging. 2016;43:1664–72.PubMedCrossRef
97.
go back to reference Henriksen OM, Marner L, Law I. Clinical PET/MR imaging in dementia and neuro-oncology. PET Clin. 2016;11:441–52.PubMedCrossRef Henriksen OM, Marner L, Law I. Clinical PET/MR imaging in dementia and neuro-oncology. PET Clin. 2016;11:441–52.PubMedCrossRef
98.
go back to reference Avula S, Peet A, Morana G, Morgan P, Warmuth-Metz M, Jaspan T. Correction to: European Society for Paediatric Oncology (SIOPE) MRI guidelines for imaging patients with central nervous system tumours (Child’s Nervous System, (2021), 37, 8, (2497-2508), 10.1007/s00381-021-05199-4). Child’s Nerv Syst. 2021;37:2509–10.CrossRef Avula S, Peet A, Morana G, Morgan P, Warmuth-Metz M, Jaspan T. Correction to: European Society for Paediatric Oncology (SIOPE) MRI guidelines for imaging patients with central nervous system tumours (Child’s Nervous System, (2021), 37, 8, (2497-2508), 10.1007/s00381-021-05199-4). Child’s Nerv Syst. 2021;37:2509–10.CrossRef
99.
go back to reference Juengling FD, Kassubek J, Martens-Le Bouar H, Reinhardt MJ, Krause T, Nitzsche EU, et al. Cerebral regional hypometabolism caused by propofol-induced sedation in children with severe myoclonic epilepsy: A study using fluorodeoxyglucose positron emission tomography and statistical parametric mapping. Neurosci Lett. 2002;335:79–82.PubMedCrossRef Juengling FD, Kassubek J, Martens-Le Bouar H, Reinhardt MJ, Krause T, Nitzsche EU, et al. Cerebral regional hypometabolism caused by propofol-induced sedation in children with severe myoclonic epilepsy: A study using fluorodeoxyglucose positron emission tomography and statistical parametric mapping. Neurosci Lett. 2002;335:79–82.PubMedCrossRef
100.
go back to reference Puget S, Alshehri A, Beccaria K, Blauwblomme T, Paternoster G, James S, et al. Pediatric infratentorial ganglioglioma. Child’s Nerv Syst. 2015;31:1707–16.CrossRef Puget S, Alshehri A, Beccaria K, Blauwblomme T, Paternoster G, James S, et al. Pediatric infratentorial ganglioglioma. Child’s Nerv Syst. 2015;31:1707–16.CrossRef
101.
go back to reference Luo CB, Teng MM, Chen SS, Lirng JF, Guo WY, Lan GY, et al. Intracranial ganglioglioma: CT and MRI findings. Kaohsiung J Med Sci. 1997;13:467–74.PubMed Luo CB, Teng MM, Chen SS, Lirng JF, Guo WY, Lan GY, et al. Intracranial ganglioglioma: CT and MRI findings. Kaohsiung J Med Sci. 1997;13:467–74.PubMed
102.
go back to reference Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M. PET imaging in the surgical management of pediatric brain tumors. Child’s Nerv Syst. 2007;23:739–51.CrossRef Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M. PET imaging in the surgical management of pediatric brain tumors. Child’s Nerv Syst. 2007;23:739–51.CrossRef
103.
go back to reference Ginet M, Zaragori T, Marie PY, Roch V, Gauchotte G, Rech F, et al. Integration of dynamic parameters in the analysis of 18F-FDopa PET imaging improves the prediction of molecular features of gliomas. Eur J Nucl Med Mol Imaging. 2020;47:1381–90.PubMedCrossRef Ginet M, Zaragori T, Marie PY, Roch V, Gauchotte G, Rech F, et al. Integration of dynamic parameters in the analysis of 18F-FDopa PET imaging improves the prediction of molecular features of gliomas. Eur J Nucl Med Mol Imaging. 2020;47:1381–90.PubMedCrossRef
104.
go back to reference Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G. Neuroimaging of juvenile pilocytic astrocytomas: An enigma. Radiology. 1993;189:221–5.PubMedCrossRef Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G. Neuroimaging of juvenile pilocytic astrocytomas: An enigma. Radiology. 1993;189:221–5.PubMedCrossRef
105.
go back to reference Holthoff VA, Herholz K, Berthold F, Widemann B, Schröder R, Neubauer I, et al. In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer. 1993;72:1394–403.PubMedCrossRef Holthoff VA, Herholz K, Berthold F, Widemann B, Schröder R, Neubauer I, et al. In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer. 1993;72:1394–403.PubMedCrossRef
106.
go back to reference Cecchin D, Garibotto V, Law I, Goffin K. PET imaging in neurodegeneration and neuro-oncology: Variants and Pitfalls. Semin Nucl Med. 2021;51:408–18.PubMedCrossRef Cecchin D, Garibotto V, Law I, Goffin K. PET imaging in neurodegeneration and neuro-oncology: Variants and Pitfalls. Semin Nucl Med. 2021;51:408–18.PubMedCrossRef
107.
go back to reference Morana G, Piccardo A, Garrè ML, Cabria M, Rossi A. 18F-DOPA uptake of developmental venous anomalies in children with brain tumors. Clin Nucl Med. 2016;41:e351-2.PubMedCrossRef Morana G, Piccardo A, Garrè ML, Cabria M, Rossi A. 18F-DOPA uptake of developmental venous anomalies in children with brain tumors. Clin Nucl Med. 2016;41:e351-2.PubMedCrossRef
108.
go back to reference Stanescu L, Ishak GE, Khanna PC, Biyyam DR, Shaw DW, Parisi MT. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics. 2013;33:1279–303.PubMedCrossRef Stanescu L, Ishak GE, Khanna PC, Biyyam DR, Shaw DW, Parisi MT. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics. 2013;33:1279–303.PubMedCrossRef
109.
go back to reference Morana G, Piccardo A, Garrè ML, Nobili F, Rossi A. Late persistent increased putaminal 18F-DOPA uptake following ipsilateral frontal resection: Evidence for corticostriatal synaptic plasticity? Clin Nucl Med. 2015;40:e451–2.PubMedCrossRef Morana G, Piccardo A, Garrè ML, Nobili F, Rossi A. Late persistent increased putaminal 18F-DOPA uptake following ipsilateral frontal resection: Evidence for corticostriatal synaptic plasticity? Clin Nucl Med. 2015;40:e451–2.PubMedCrossRef
110.
go back to reference Jones BV, Linscott L, Koberlein G, Hummel TR, Leach JL. Increased prevalence of developmental venous anomalies in children with intracranial neoplasms. Am J Neuroradiol. 2015;36:1782–5.PubMedPubMedCentralCrossRef Jones BV, Linscott L, Koberlein G, Hummel TR, Leach JL. Increased prevalence of developmental venous anomalies in children with intracranial neoplasms. Am J Neuroradiol. 2015;36:1782–5.PubMedPubMedCentralCrossRef
111.
go back to reference Harreld JH, Doubrovin M, Butch ER, Edwards A, Shulkin B. Developmental venous anomalies mimicking neoplasm on 11C-methionine PET and DSC perfusion MRI. Clin Nucl Med. 2017;42:e275–6.PubMedPubMedCentralCrossRef Harreld JH, Doubrovin M, Butch ER, Edwards A, Shulkin B. Developmental venous anomalies mimicking neoplasm on 11C-methionine PET and DSC perfusion MRI. Clin Nucl Med. 2017;42:e275–6.PubMedPubMedCentralCrossRef
112.
go back to reference Parisi MT, Bermo MS, Alessio AM, Sharp SE, Gelfand MJ, Shulkin BL. Optimization of pediatric PET/CT. Semin Nucl Med. 2017;47:258–74.PubMedCrossRef Parisi MT, Bermo MS, Alessio AM, Sharp SE, Gelfand MJ, Shulkin BL. Optimization of pediatric PET/CT. Semin Nucl Med. 2017;47:258–74.PubMedCrossRef
113.
go back to reference Chiti A, Menu Y. Radiology and nuclear medicine: advancing together in the era of precision medicine. Eur J Nucl Med Mol Imaging. 2020;47:517–8.PubMedCrossRef Chiti A, Menu Y. Radiology and nuclear medicine: advancing together in the era of precision medicine. Eur J Nucl Med Mol Imaging. 2020;47:517–8.PubMedCrossRef
Metadata
Title
Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0
Authors
Arnoldo Piccardo
Nathalie L. Albert
Lise Borgwardt
Frederic H. Fahey
Darren Hargrave
Norbert Galldiks
Nina Jehanno
Lars Kurch
Ian Law
Ruth Lim
Egesta Lopci
Lisbeth Marner
Giovanni Morana
Tina Young Poussaint
Victor J. Seghers
Barry L. Shulkin
Katherine E. Warren
Tatjana Traub-Weidinger
Pietro Zucchetta
Publication date
10-05-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 11/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05817-6

Other articles of this Issue 11/2022

European Journal of Nuclear Medicine and Molecular Imaging 11/2022 Go to the issue