Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2014

01-05-2014 | Review Article

The origins of SPECT and SPECT/CT

Author: Brian F. Hutton

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2014

Login to get access

Abstract

Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.
Literature
1.
go back to reference Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia, PA: Elsevier Health Sciences; 2003. p. 299–324. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia, PA: Elsevier Health Sciences; 2003. p. 299–324.
2.
go back to reference Zeng GL, Galt JR, Wernick MN, Mintzer RA, Aarsvold JN. Single-photon emission computed tomography. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 127–52.CrossRef Zeng GL, Galt JR, Wernick MN, Mintzer RA, Aarsvold JN. Single-photon emission computed tomography. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 127–52.CrossRef
3.
go back to reference Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006;51:R99–115.PubMedCrossRef Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006;51:R99–115.PubMedCrossRef
4.
go back to reference Hutton BF, Beekman FJ. SPECT and SPECT/CT. In: Weissleder R, Ross BD, Rehemtulla A, Gambhir SS, editors. Molecular imaging: principles and practice. Shelton: People’s Medical Publishing House - USA; 2010. p. 40–53. Hutton BF, Beekman FJ. SPECT and SPECT/CT. In: Weissleder R, Ross BD, Rehemtulla A, Gambhir SS, editors. Molecular imaging: principles and practice. Shelton: People’s Medical Publishing House - USA; 2010. p. 40–53.
5.
go back to reference Webb S. From the Watching of Shadows: the origins of radiological tomography. Bristol: Adam Hilger; 1990. Webb S. From the Watching of Shadows: the origins of radiological tomography. Bristol: Adam Hilger; 1990.
6.
go back to reference Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology. 1963;80:653–62. Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology. 1963;80:653–62.
7.
go back to reference Kuhl DE, Hale J, Eaton WL. Transmission scanning: a useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology. 1966;87:278–84.PubMed Kuhl DE, Hale J, Eaton WL. Transmission scanning: a useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology. 1966;87:278–84.PubMed
8.
go back to reference Kuhl DE, Edwards RQ. The Mark III scanner: a compact device for multiple-view and section scanning of the brain. Radiology. 1970;96:563–70.PubMed Kuhl DE, Edwards RQ. The Mark III scanner: a compact device for multiple-view and section scanning of the brain. Radiology. 1970;96:563–70.PubMed
9.
go back to reference Bowley AR, Taylor CG, Causer DA, Barber DC, Keyes WI, Undrill PE, et al. A radioisotope scanner for rectilinear, arc, transverse section and longitudinal section scanning: (ASS – the Aberdeen Section Scanner). Br J Radiol. 1973;46:262–71.PubMedCrossRef Bowley AR, Taylor CG, Causer DA, Barber DC, Keyes WI, Undrill PE, et al. A radioisotope scanner for rectilinear, arc, transverse section and longitudinal section scanning: (ASS – the Aberdeen Section Scanner). Br J Radiol. 1973;46:262–71.PubMedCrossRef
10.
11.
go back to reference Anger HO, Price DC, Yost PE. Transverse section tomography with the scintillation camera. J Nucl Med. 1967;8:314. Anger HO, Price DC, Yost PE. Transverse section tomography with the scintillation camera. J Nucl Med. 1967;8:314.
12.
go back to reference Budinger TF, Gullberg GT. Three dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci. 1974;21:2–19.CrossRef Budinger TF, Gullberg GT. Three dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci. 1974;21:2–19.CrossRef
13.
go back to reference Muellehner G. A tomographic scintillation camera. Phys Med Biol. 1971;16:87–96.CrossRef Muellehner G. A tomographic scintillation camera. Phys Med Biol. 1971;16:87–96.CrossRef
14.
go back to reference Huesman RH, Gullberg GT, Greenberg WL, Budinger TF. Donner algorithms for reconstruction tomography. RECLBL library users manual, Publication 214. University of California: Lawrence Berkeley Laboratory; 1977. Huesman RH, Gullberg GT, Greenberg WL, Budinger TF. Donner algorithms for reconstruction tomography. RECLBL library users manual, Publication 214. University of California: Lawrence Berkeley Laboratory; 1977.
15.
go back to reference Keyes JW, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL. The Humongotron – a scintillation camera transaxial tomography. J Nucl Med. 1977;18:381–7.PubMed Keyes JW, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL. The Humongotron – a scintillation camera transaxial tomography. J Nucl Med. 1977;18:381–7.PubMed
16.
go back to reference Jaszczak RJ, Murphy PH, Huard D, Burdine JA. Radionuclide emission computed tomography of the head with 99mTc and a scintillation camera. J Nucl Med. 1977;18:373–80.PubMed Jaszczak RJ, Murphy PH, Huard D, Burdine JA. Radionuclide emission computed tomography of the head with 99mTc and a scintillation camera. J Nucl Med. 1977;18:373–80.PubMed
17.
go back to reference Larsson SA. Gamma camera emission tomography: development and properties of a multi-sectional emission computed tomography system. Acta Radiol Suppl. 1980;363:1–75.PubMed Larsson SA. Gamma camera emission tomography: development and properties of a multi-sectional emission computed tomography system. Acta Radiol Suppl. 1980;363:1–75.PubMed
18.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRef
19.
go back to reference Anger HO. Tomographic gamma-ray scanner with simultaneous readout of several planes. In: Gottschalk A, Beck RN, editors. Fundamental problems in scanning. Springfield: Charles C Thomas; 1968. Anger HO. Tomographic gamma-ray scanner with simultaneous readout of several planes. In: Gottschalk A, Beck RN, editors. Fundamental problems in scanning. Springfield: Charles C Thomas; 1968.
20.
go back to reference Myers MJ, Keyes WI, Mallard JR. An analysis of tomographic scanning systems. Symposium on Medical Radioisotope Scintigraphy 1972, vol. 1. Vienna: International Atomic Energy Agency; 1973. p. 331–45. Myers MJ, Keyes WI, Mallard JR. An analysis of tomographic scanning systems. Symposium on Medical Radioisotope Scintigraphy 1972, vol. 1. Vienna: International Atomic Energy Agency; 1973. p. 331–45.
21.
go back to reference McAfee JG, Mozley JM, Stabler EP. Longitudinal tomographic radioisotope imaging with a scintillation camera: theoretical considerations of a new method. J Nucl Med. 1969;10:654–9.PubMed McAfee JG, Mozley JM, Stabler EP. Longitudinal tomographic radioisotope imaging with a scintillation camera: theoretical considerations of a new method. J Nucl Med. 1969;10:654–9.PubMed
22.
go back to reference Walker WG. Tomographic radiation camera. US patent 3612865 1968–71. Walker WG. Tomographic radiation camera. US patent 3612865 1968–71.
23.
go back to reference Freedman GS. Tomography with a gamma camera. J Nucl Med. 1970;11:602–4.PubMed Freedman GS. Tomography with a gamma camera. J Nucl Med. 1970;11:602–4.PubMed
24.
go back to reference Muellehner G. Tomographic imaging device using a rotating slanted multichannel collimator. US Patent 3684886 1970–2. Muellehner G. Tomographic imaging device using a rotating slanted multichannel collimator. US Patent 3684886 1970–2.
25.
go back to reference Muellehner G. Tomographic imaging device. US Patent 3852603 1973–4 Muellehner G. Tomographic imaging device. US Patent 3852603 1973–4
26.
go back to reference Vogel RA, Kirch D, LeFree M, Steel PC. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med. 1978;19:648–54.PubMed Vogel RA, Kirch D, LeFree M, Steel PC. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med. 1978;19:648–54.PubMed
27.
go back to reference Beekman FJ, van der Have F. The Pinhole: gateway to ultra-high resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34:151–61.PubMedCrossRef Beekman FJ, van der Have F. The Pinhole: gateway to ultra-high resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34:151–61.PubMedCrossRef
28.
go back to reference Barrett HH, DeMeester AD, Wilson DT, Farmelant MH. Tomographic imaging with a Fresnel zoneplate camera. In: Freedman GS, editor. Tomographic imaging in nuclear medicine. New York: Society of Nuclear Medicine; 1974. Barrett HH, DeMeester AD, Wilson DT, Farmelant MH. Tomographic imaging with a Fresnel zoneplate camera. In: Freedman GS, editor. Tomographic imaging in nuclear medicine. New York: Society of Nuclear Medicine; 1974.
29.
go back to reference Knoll GF, Williams JJ. Application of a ring pseudorandom aperture for transverse section tomography. IEEE Trans Nucl Sci. 1979;245:581–6. Knoll GF, Williams JJ. Application of a ring pseudorandom aperture for transverse section tomography. IEEE Trans Nucl Sci. 1979;245:581–6.
30.
go back to reference Knoll GF, Rogers WL, Koral KF, Stamos JA, Clinthorne NH. Application of coded apertures in tomographic head scanning. Nucl Instrum Methods. 1984;221:226–32.CrossRef Knoll GF, Rogers WL, Koral KF, Stamos JA, Clinthorne NH. Application of coded apertures in tomographic head scanning. Nucl Instrum Methods. 1984;221:226–32.CrossRef
31.
go back to reference Brill AB, Patton JA, Erickson JJ, King PH. Multicrystal tomographic scanner for mapping thin cross sections of radioactivity in an organ of the human body. US patent 3591806 1970–1. Brill AB, Patton JA, Erickson JJ, King PH. Multicrystal tomographic scanner for mapping thin cross sections of radioactivity in an organ of the human body. US patent 3591806 1970–1.
32.
go back to reference Patton JA, Brill AB, Erickson JJ, Cook WE, Johnstone RE. A new approach to the mapping of three-dimensional radionuclide distributions. J Nucl Med. 1969;10:363. Patton JA, Brill AB, Erickson JJ, Cook WE, Johnstone RE. A new approach to the mapping of three-dimensional radionuclide distributions. J Nucl Med. 1969;10:363.
33.
go back to reference Pickens DR, King PH, Patton JA, Brill AB. The design, construction and preliminary testing of a mutually orthogonal coincident focal point tomographic scanner. Proceedings of the 13th Annual Meeting of the Association for the Advancement of Medical Instrumentation, 1978, Washington DC. Arlington, VA: Association for the Advancement of Medical Instrumentation; 1978 Pickens DR, King PH, Patton JA, Brill AB. The design, construction and preliminary testing of a mutually orthogonal coincident focal point tomographic scanner. Proceedings of the 13th Annual Meeting of the Association for the Advancement of Medical Instrumentation, 1978, Washington DC. Arlington, VA: Association for the Advancement of Medical Instrumentation; 1978
34.
go back to reference Stoddart HF, Stoddart HA. A new development in single gamma transaxial tomography: Union Carbide focused collimator scanner. IEEE Trans Nucl Sci. 1979;NS-26:2710–2.CrossRef Stoddart HF, Stoddart HA. A new development in single gamma transaxial tomography: Union Carbide focused collimator scanner. IEEE Trans Nucl Sci. 1979;NS-26:2710–2.CrossRef
35.
go back to reference Jarritt PH, Ell PJ, Myers MJ, Brown JG, Deacon JM. A new transverse-section brain imager for single-gamma emitters. J Nucl Med. 1979;20:319–27.PubMed Jarritt PH, Ell PJ, Myers MJ, Brown JG, Deacon JM. A new transverse-section brain imager for single-gamma emitters. J Nucl Med. 1979;20:319–27.PubMed
36.
go back to reference Moore SC, Doherty MD, Zimmerman RE, Holman BL. Improved performance from modifications to the multidetector SPECT brain scanner. J Nucl Med. 1984;25:688–91.PubMed Moore SC, Doherty MD, Zimmerman RE, Holman BL. Improved performance from modifications to the multidetector SPECT brain scanner. J Nucl Med. 1984;25:688–91.PubMed
37.
go back to reference Rogers WL, Clinthorne NH, Stamos J, Koral KF, et al. SPRINT: a stationary detector single photon ring tomography for brain imaging. IEEE Trans Med Imaging. 1982;1:63–8.PubMedCrossRef Rogers WL, Clinthorne NH, Stamos J, Koral KF, et al. SPRINT: a stationary detector single photon ring tomography for brain imaging. IEEE Trans Med Imaging. 1982;1:63–8.PubMedCrossRef
38.
go back to reference Rogers WL, Clinthorne NH, Shao L, Chiao P, Ding Y, Stamos JA, et al. SPRINT II: a second generation single photon ring tomograph. IEEE Trans Med Imaging. 1988;7:291–7.PubMedCrossRef Rogers WL, Clinthorne NH, Shao L, Chiao P, Ding Y, Stamos JA, et al. SPRINT II: a second generation single photon ring tomograph. IEEE Trans Med Imaging. 1988;7:291–7.PubMedCrossRef
39.
go back to reference Metzler SD, Accorsi R, Novak JR, Aya NAS, Jaszczak RJ. On-axis sensitivity and resolution of a slit-slat collimator. J Nucl Med. 2006;47:1884–90.PubMed Metzler SD, Accorsi R, Novak JR, Aya NAS, Jaszczak RJ. On-axis sensitivity and resolution of a slit-slat collimator. J Nucl Med. 2006;47:1884–90.PubMed
40.
go back to reference Mahmood ST, Erlandsson K, Cullum I, Hutton BF. Design of a novel slit-slat collimator system for SPECT imaging of the human brain. Phys Med Biol. 2009;54:3433–49.PubMedCrossRef Mahmood ST, Erlandsson K, Cullum I, Hutton BF. Design of a novel slit-slat collimator system for SPECT imaging of the human brain. Phys Med Biol. 2009;54:3433–49.PubMedCrossRef
41.
go back to reference Stokely EM, Sveinsdottir E, Lassen NA, Rommer P. A single photon dynamic computer assisted tomography (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr. 1980;4:230–40.PubMedCrossRef Stokely EM, Sveinsdottir E, Lassen NA, Rommer P. A single photon dynamic computer assisted tomography (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr. 1980;4:230–40.PubMedCrossRef
42.
go back to reference Genna S, Smith AP. The development of ASPECT, an annular single crystal brain camera for high efficiency SPECT. IEEE Trans Nucl Sci. 1988;35:654–8.CrossRef Genna S, Smith AP. The development of ASPECT, an annular single crystal brain camera for high efficiency SPECT. IEEE Trans Nucl Sci. 1988;35:654–8.CrossRef
43.
go back to reference Kanno I, Uemura K, Shuichi M, Yuko M. Headtome: a hybrid emission tomography for single photon and positron emission imaging of the brain. J Comput Assist Tomogr. 1981;5:216–26.PubMedCrossRef Kanno I, Uemura K, Shuichi M, Yuko M. Headtome: a hybrid emission tomography for single photon and positron emission imaging of the brain. J Comput Assist Tomogr. 1981;5:216–26.PubMedCrossRef
44.
go back to reference Kimura K, Hashikawa K, Etani H, Uehara A, Kozuka T, Moriwaki H, et al. A new apparatus for brain imaging: four-head rotating gamma camera single photon emission computed tomography. J Nucl Med. 1990;31:603–9.PubMed Kimura K, Hashikawa K, Etani H, Uehara A, Kozuka T, Moriwaki H, et al. A new apparatus for brain imaging: four-head rotating gamma camera single photon emission computed tomography. J Nucl Med. 1990;31:603–9.PubMed
45.
go back to reference Klein WP, Barrett HH, Pang IW, Patton DD. FASTSPECT: electrical and mechanical design of a high-resolution dynamic SPECT imager. Nuclear Science Symposium Medical Imaging Conference Record, 1995. IEEE. vol. 2, p. 931–2. Klein WP, Barrett HH, Pang IW, Patton DD. FASTSPECT: electrical and mechanical design of a high-resolution dynamic SPECT imager. Nuclear Science Symposium Medical Imaging Conference Record, 1995. IEEE. vol. 2, p. 931–2.
46.
go back to reference Brzymialhiewicz CN, Tornai MP, McKinley RL, Bowsher JE. Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector. IEEE Trans Med Imaging. 2005;24:868–77.CrossRef Brzymialhiewicz CN, Tornai MP, McKinley RL, Bowsher JE. Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector. IEEE Trans Med Imaging. 2005;24:868–77.CrossRef
48.
go back to reference Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med. 2011;52:210–7.PubMedCrossRef Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med. 2011;52:210–7.PubMedCrossRef
49.
go back to reference Patton JA, Slomka PJ, Germano G, Berman DS. Recent technological advances in nuclear cardiology. J Nucl Cardiol. 2007;14:555–65.CrossRef Patton JA, Slomka PJ, Germano G, Berman DS. Recent technological advances in nuclear cardiology. J Nucl Cardiol. 2007;14:555–65.CrossRef
50.
go back to reference Hutton BF. Developments in cardiac-specific SPECT imaging. Q J Nucl Med. 2012;56:221–9. Hutton BF. Developments in cardiac-specific SPECT imaging. Q J Nucl Med. 2012;56:221–9.
51.
go back to reference Bai C, Conwell R, Kindem J, Babla H, Gurley M, De Los Santos R 2nd, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol. 2010;17:459–69.PubMedCentralPubMedCrossRef Bai C, Conwell R, Kindem J, Babla H, Gurley M, De Los Santos R 2nd, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol. 2010;17:459–69.PubMedCentralPubMedCrossRef
52.
go back to reference Chang W, Ordonez CE, Liang H, Li Y, Liu J. C-SPECT – a clinical cardiac SPECT/TCT platform: design concepts and performance potential. IEEE Trans Nucl Sci. 2009;56:2659–71.PubMedCentralPubMedCrossRef Chang W, Ordonez CE, Liang H, Li Y, Liu J. C-SPECT – a clinical cardiac SPECT/TCT platform: design concepts and performance potential. IEEE Trans Nucl Sci. 2009;56:2659–71.PubMedCentralPubMedCrossRef
53.
go back to reference Wagenaar DJ. CdTe and CdZnTe semiconductor detectors for nuclear medicine imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 269–91.CrossRef Wagenaar DJ. CdTe and CdZnTe semiconductor detectors for nuclear medicine imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 269–91.CrossRef
54.
go back to reference Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37:1887–902.PubMedCentralPubMedCrossRef Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37:1887–902.PubMedCentralPubMedCrossRef
55.
go back to reference Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927–34.PubMedCentralPubMedCrossRef Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927–34.PubMedCentralPubMedCrossRef
56.
go back to reference Funk T, Kirch DL, Koss JE, Botvinick E, Hasagawa B. A novel approach to multipinhole SPECT for myocardial perfusion imaging. J Nucl Med. 2006;47:596–602. Funk T, Kirch DL, Koss JE, Botvinick E, Hasagawa B. A novel approach to multipinhole SPECT for myocardial perfusion imaging. J Nucl Med. 2006;47:596–602.
57.
go back to reference Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50:635–43.PubMedCrossRef Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50:635–43.PubMedCrossRef
58.
go back to reference Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Evaluation of the performance characteristics of D-SPECT: a novel SPECT system designed for nuclear cardiology. Phys Med Biol. 2009;54:2635–49.PubMedCrossRef Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Evaluation of the performance characteristics of D-SPECT: a novel SPECT system designed for nuclear cardiology. Phys Med Biol. 2009;54:2635–49.PubMedCrossRef
60.
61.
go back to reference Moore JW, Furenlid LR, Barrett HH. Instrumentation design for adaptive SPECT/CT. Nuclear Science Symposium Medical Imaging Conference Record, 2008. IEEE. p. 5585–5587. Moore JW, Furenlid LR, Barrett HH. Instrumentation design for adaptive SPECT/CT. Nuclear Science Symposium Medical Imaging Conference Record, 2008. IEEE. p. 5585–5587.
62.
go back to reference Pichler BJ, Ziegler SI. Photodetectors. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 255–67.CrossRef Pichler BJ, Ziegler SI. Photodetectors. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 255–67.CrossRef
63.
go back to reference Shah KS, Farrell R, Grazioso R, Harmon ES, Karplus E. Position-sensitive avalanche photodiodes for gamma-ray imaging. IEEE Trans Nucl Sci. 2002;49:1687–92.CrossRef Shah KS, Farrell R, Grazioso R, Harmon ES, Karplus E. Position-sensitive avalanche photodiodes for gamma-ray imaging. IEEE Trans Nucl Sci. 2002;49:1687–92.CrossRef
64.
go back to reference Dolgoshein B, Balagura V, Buzhan P, Danilov M, Filatov L, Garutti E, et al. Status report on silicon photomultiplier development and its applications. Nucl Instrum Meth A. 2006;563:368–76.CrossRef Dolgoshein B, Balagura V, Buzhan P, Danilov M, Filatov L, Garutti E, et al. Status report on silicon photomultiplier development and its applications. Nucl Instrum Meth A. 2006;563:368–76.CrossRef
65.
go back to reference Schaart DR, van Dam HT, Deifert S, Vinke R, Dendooven P, Löhner H, et al. A novel SiPM-array-based monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501–12.PubMedCrossRef Schaart DR, van Dam HT, Deifert S, Vinke R, Dendooven P, Löhner H, et al. A novel SiPM-array-based monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501–12.PubMedCrossRef
66.
go back to reference Fiorini C, Longoni A, Perotti F. New detectors for gamma-ray spectroscopy and imaging, based on scintillators coupled to silicon drift detectors. Nucl Instrum Meth A. 2000;604:101–3.CrossRef Fiorini C, Longoni A, Perotti F. New detectors for gamma-ray spectroscopy and imaging, based on scintillators coupled to silicon drift detectors. Nucl Instrum Meth A. 2000;604:101–3.CrossRef
67.
go back to reference Fiorini C, Longoni A, Perotti F, Labanti C, Rossi E, Lechner P, et al. A monolithic array of silicon drift detectors coupled to a single scintillator for gamma-ray imaging with sub-millimeter position resolution. Nucl Instrum Meth A. 2003;512:265–71.CrossRef Fiorini C, Longoni A, Perotti F, Labanti C, Rossi E, Lechner P, et al. A monolithic array of silicon drift detectors coupled to a single scintillator for gamma-ray imaging with sub-millimeter position resolution. Nucl Instrum Meth A. 2003;512:265–71.CrossRef
68.
go back to reference Tan LJ, Cai L, Meng LJ. A prototype of the MR-compatible ultra-high resolution SPECT for in vivo mice brain imaging. Nuclear Science Symposium Medical Imaging Conference Record, 2009. IEEE. p. 2800–5. Tan LJ, Cai L, Meng LJ. A prototype of the MR-compatible ultra-high resolution SPECT for in vivo mice brain imaging. Nuclear Science Symposium Medical Imaging Conference Record, 2009. IEEE. p. 2800–5.
69.
go back to reference Hamamura MJ, Ha S, Roeck WW, Muffuler LT, Wagenaar DJ, Meier D, et al. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol. 2010;55:1563–75.PubMedCrossRef Hamamura MJ, Ha S, Roeck WW, Muffuler LT, Wagenaar DJ, Meier D, et al. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol. 2010;55:1563–75.PubMedCrossRef
70.
go back to reference Fiorini C, Busca P, Peloso R, Abba A, Geraci A, Bianchi C, et al. The HICAM gamma camera. IEEE Trans Nucl Sci. 2012;59:537–44.CrossRef Fiorini C, Busca P, Peloso R, Abba A, Geraci A, Bianchi C, et al. The HICAM gamma camera. IEEE Trans Nucl Sci. 2012;59:537–44.CrossRef
71.
go back to reference Busca P, Fiorini C, Butt AD, Occhipinti M, Peloso R, Quaglia R, et al. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging. Nucl Instrum Meth Phys Res A. 2013. doi:10.1016/j.nima.2013.08.064. Busca P, Fiorini C, Butt AD, Occhipinti M, Peloso R, Quaglia R, et al. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging. Nucl Instrum Meth Phys Res A. 2013. doi:10.​1016/​j.​nima.​2013.​08.​064.
72.
go back to reference Beekman FJ, de Vre GA. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution. Phys Med Biol. 2005;50:N109–19.PubMedCrossRef Beekman FJ, de Vre GA. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution. Phys Med Biol. 2005;50:N109–19.PubMedCrossRef
73.
go back to reference Nagarkar VV, Shestakova I, Gaysinskiy V, Tipnis SV, Singh B, Barber W, et al. A CCD-based detector for SPECT. IEEE Trans Nucl Sci. 2006;53:54–8.CrossRef Nagarkar VV, Shestakova I, Gaysinskiy V, Tipnis SV, Singh B, Barber W, et al. A CCD-based detector for SPECT. IEEE Trans Nucl Sci. 2006;53:54–8.CrossRef
74.
go back to reference Miller BW, Barber HB, Barrett HH, Shestakova I, Singh B, Nagarkar VV. Single-photon spatial and energy resolution enhancement of a columnar CsI(Tl)/EMCCD gamma-camera using maximum-likelihood estimation. Proc SPIE. 2006;6142. doi:10.1117/12.652650 Miller BW, Barber HB, Barrett HH, Shestakova I, Singh B, Nagarkar VV. Single-photon spatial and energy resolution enhancement of a columnar CsI(Tl)/EMCCD gamma-camera using maximum-likelihood estimation. Proc SPIE. 2006;6142. doi:10.​1117/​12.​652650
75.
go back to reference Rogulski MM, Barber HB, Barrett HH, Shoemaker RL, Woolfenden JM. Ultra-high-resolution brain SPECT imaging: simulation results. IEEE Trans Nucl Sci. 1993;40:1123–9.CrossRef Rogulski MM, Barber HB, Barrett HH, Shoemaker RL, Woolfenden JM. Ultra-high-resolution brain SPECT imaging: simulation results. IEEE Trans Nucl Sci. 1993;40:1123–9.CrossRef
76.
go back to reference Goorden MC, Rentmeester MC, Beekman FJ. Theoretical analysis of full-ring multi-pinhole brain SPECT. Phys Med Biol. 2009;54:6593–610.PubMedCrossRef Goorden MC, Rentmeester MC, Beekman FJ. Theoretical analysis of full-ring multi-pinhole brain SPECT. Phys Med Biol. 2009;54:6593–610.PubMedCrossRef
77.
go back to reference Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci. 2003;50:315–20.CrossRef Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci. 2003;50:315–20.CrossRef
78.
go back to reference Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJA, van Rijk PP, Burbach JPH, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabelled molecules in mice. J Nucl Med. 2005;46:1194–200.PubMed Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJA, van Rijk PP, Burbach JPH, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabelled molecules in mice. J Nucl Med. 2005;46:1194–200.PubMed
79.
go back to reference Todd RW, Nightingale JM, Everett DB. A proposed gamma-camera. Nature. 1974;25:132–4.CrossRef Todd RW, Nightingale JM, Everett DB. A proposed gamma-camera. Nature. 1974;25:132–4.CrossRef
80.
go back to reference Singh M. An electronically collimated gamma camera for single photon emission computed tomography. Part I: theoretical considerations and design criteria. Med Phys. 1983;10:421–7.PubMedCrossRef Singh M. An electronically collimated gamma camera for single photon emission computed tomography. Part I: theoretical considerations and design criteria. Med Phys. 1983;10:421–7.PubMedCrossRef
81.
go back to reference Singh M, Doria D. An electronically collimated gamma camera for single photon emission computed tomography. Part II: image reconstruction and preliminary experimental measurements. Med Phys. 1983;10:428–35.PubMedCrossRef Singh M, Doria D. An electronically collimated gamma camera for single photon emission computed tomography. Part II: image reconstruction and preliminary experimental measurements. Med Phys. 1983;10:428–35.PubMedCrossRef
82.
go back to reference LeBlanc JW, Clinthorne NH, Hua CH, Nygard E, Rogers WL, Wehe DK, et al. C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging. IEEE Trans Nucl Sci. 1998;45:943–9.CrossRef LeBlanc JW, Clinthorne NH, Hua CH, Nygard E, Rogers WL, Wehe DK, et al. C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging. IEEE Trans Nucl Sci. 1998;45:943–9.CrossRef
83.
go back to reference Rogers WL, Clinthorne NH, Bolozdyna A. Compton cameras for nuclear medical imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 383–419.CrossRef Rogers WL, Clinthorne NH, Bolozdyna A. Compton cameras for nuclear medical imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 383–419.CrossRef
84.
go back to reference Kabuki S, Hattori K, Kohara R, Kunieda E, Kubo A, Kubo H, et al. Development of electron tracking Compton camera using micro pixel gas chamber for medical imaging. Nucl Instrum Meth A. 2007;580:1031–5.CrossRef Kabuki S, Hattori K, Kohara R, Kunieda E, Kubo A, Kubo H, et al. Development of electron tracking Compton camera using micro pixel gas chamber for medical imaging. Nucl Instrum Meth A. 2007;580:1031–5.CrossRef
85.
go back to reference Orito R, Kubo H, Miuchi K, Nagayoshi T, Takada A, Takeda A, et al. Compton gamma-ray imaging detector with electron tracking. Nucl Instrum Meth A. 2004;525:107–13.CrossRef Orito R, Kubo H, Miuchi K, Nagayoshi T, Takada A, Takeda A, et al. Compton gamma-ray imaging detector with electron tracking. Nucl Instrum Meth A. 2004;525:107–13.CrossRef
86.
go back to reference Harkness LJ, Boston AJ, Boston HC, Cresswell JR, Grint AN, Lazarus I, et al. Design considerations of a Compton camera for low energy medical imaging. AIP Conf Proc. 2009;1194:90–5.CrossRef Harkness LJ, Boston AJ, Boston HC, Cresswell JR, Grint AN, Lazarus I, et al. Design considerations of a Compton camera for low energy medical imaging. AIP Conf Proc. 2009;1194:90–5.CrossRef
88.
go back to reference Moses WW, Shah KS. Potential for RbGd2Br7:Ce, LaBr3:Ce, LaBr3:Ce, and LuI3:Ce in nuclear medical imaging. Nucl Instrum Meth A. 2005;537:317–20.CrossRef Moses WW, Shah KS. Potential for RbGd2Br7:Ce, LaBr3:Ce, LaBr3:Ce, and LuI3:Ce in nuclear medical imaging. Nucl Instrum Meth A. 2005;537:317–20.CrossRef
89.
go back to reference Rajaram R, Bhattacharya M, Xinhong D, Malmin R, Rempel TD, Vija AH, Zeintl J. Tomographic performance characteristics of the IQ SPECT system. Nuclear Science Symposium Medical Imaging Conference Record, 2011. IEEE. p. 2451–6. Rajaram R, Bhattacharya M, Xinhong D, Malmin R, Rempel TD, Vija AH, Zeintl J. Tomographic performance characteristics of the IQ SPECT system. Nuclear Science Symposium Medical Imaging Conference Record, 2011. IEEE. p. 2451–6.
91.
go back to reference Gindi GR, Arendt K, Barrett HH, Chiu MY, Ervin A, Giles CL, et al. Imaging with rotating slit apertures and rotating collimators. Med Phys. 1982;9:324–39.PubMedCrossRef Gindi GR, Arendt K, Barrett HH, Chiu MY, Ervin A, Giles CL, et al. Imaging with rotating slit apertures and rotating collimators. Med Phys. 1982;9:324–39.PubMedCrossRef
92.
go back to reference Lodge MA, Webb S, Flower MA, Binnie DM. A prototype rotating slat collimator for single photon emission computed tomography. IEEE Trans Med Imaging. 1996;15:500–11.PubMedCrossRef Lodge MA, Webb S, Flower MA, Binnie DM. A prototype rotating slat collimator for single photon emission computed tomography. IEEE Trans Med Imaging. 1996;15:500–11.PubMedCrossRef
93.
go back to reference Chang W, Lin SL, Henkin RE. A new collimator for cardiac tomography: the quadrant slat-hole collimator. J Nucl Med. 1982;23:830–5.PubMed Chang W, Lin SL, Henkin RE. A new collimator for cardiac tomography: the quadrant slat-hole collimator. J Nucl Med. 1982;23:830–5.PubMed
94.
go back to reference Bal G, DiBella EVR, Gullberg GT, Zeng GL. Cardiac imaging using a four-segment slant-hole collimator. IEEE Trans Nucl Sci. 2006;53:2619–27.CrossRef Bal G, DiBella EVR, Gullberg GT, Zeng GL. Cardiac imaging using a four-segment slant-hole collimator. IEEE Trans Nucl Sci. 2006;53:2619–27.CrossRef
95.
96.
go back to reference Macey D, Marshall R. Absolute quantification of radiotracer uptake in lungs using a gamma camera. J Nucl Med. 1984;23:731–35. Macey D, Marshall R. Absolute quantification of radiotracer uptake in lungs using a gamma camera. J Nucl Med. 1984;23:731–35.
97.
go back to reference Malko JA, van Heertum RL, Gullberg GT, Kowalsky WP. SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med. 1986;27:701–5.PubMed Malko JA, van Heertum RL, Gullberg GT, Kowalsky WP. SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med. 1986;27:701–5.PubMed
98.
go back to reference Greer KL, Harris CC, Jaszczak RJ, Colemen RE, Hedland LW, Floyd CE, et al. Transmission computed tomography data acquisition with a SPECT system. J Nucl Med Tech. 1987;15:53–6. Greer KL, Harris CC, Jaszczak RJ, Colemen RE, Hedland LW, Floyd CE, et al. Transmission computed tomography data acquisition with a SPECT system. J Nucl Med Tech. 1987;15:53–6.
99.
go back to reference Tsui BMW, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med. 1989;30:497–507.PubMed Tsui BMW, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med. 1989;30:497–507.PubMed
100.
go back to reference Morozumi T, Nakajima M, Ogawa K, Yuta S. Attenuation correction methods using the information of attenuation distribution for single photon emission CT. Med Imaging Tech. 1984;2:20–8. Morozumi T, Nakajima M, Ogawa K, Yuta S. Attenuation correction methods using the information of attenuation distribution for single photon emission CT. Med Imaging Tech. 1984;2:20–8.
101.
go back to reference Bailey B, Hutton B, Walker P. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med. 1987;28:844–51.PubMed Bailey B, Hutton B, Walker P. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med. 1987;28:844–51.PubMed
102.
go back to reference Celler A, Sitek A, Stoub E, Hawman P, Harrop R, Lyster D. Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med. 1998;39:2183–9.PubMed Celler A, Sitek A, Stoub E, Hawman P, Harrop R, Lyster D. Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med. 1998;39:2183–9.PubMed
103.
go back to reference Gagnon D. Beacon-STM: non-uniform attenuation correction for SPECT imaging. Nucl Med Rev. 1999;2:87–92. Gagnon D. Beacon-STM: non-uniform attenuation correction for SPECT imaging. Nucl Med Rev. 1999;2:87–92.
104.
go back to reference Zeng GL, Gullberg GT, Christian PE, Gagnon D, Tung C-H. Asymmetric cone-beam transmission tomography. IEEE Trans Nucl Sci. 2001;48:117–24.CrossRef Zeng GL, Gullberg GT, Christian PE, Gagnon D, Tung C-H. Asymmetric cone-beam transmission tomography. IEEE Trans Nucl Sci. 2001;48:117–24.CrossRef
105.
go back to reference Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci. 1992;39:1134–43.CrossRef Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci. 1992;39:1134–43.CrossRef
106.
go back to reference Gullberg GT, Morgan HT, Zeng GL, Christian PE, Di Bella EVR, Tung C-H, et al. The design and performance of a simultaneous transmission and emission tomography system. IEEE Trans Nucl Sci. 1998;45:1676–98.CrossRef Gullberg GT, Morgan HT, Zeng GL, Christian PE, Di Bella EVR, Tung C-H, et al. The design and performance of a simultaneous transmission and emission tomography system. IEEE Trans Nucl Sci. 1998;45:1676–98.CrossRef
107.
go back to reference Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med. 1993;34:1752–60.PubMed Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med. 1993;34:1752–60.PubMed
108.
go back to reference Beekman FJ, Kamphuis C, Hutton BF, van Rijk PP. Half-fanbeam collimators combined with scanning point sources for simultaneous emission-transmission imaging. J Nucl Med. 1996;39:1996–2003. Beekman FJ, Kamphuis C, Hutton BF, van Rijk PP. Half-fanbeam collimators combined with scanning point sources for simultaneous emission-transmission imaging. J Nucl Med. 1996;39:1996–2003.
109.
go back to reference Hendel RC, Corbett JR, Cullom SJ, Depuey EG, Garcia EV, Batemen TM. The value and practice of attenuation correction for myocardial perfusion SPECT Imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Med. 2002;43:273–80. Hendel RC, Corbett JR, Cullom SJ, Depuey EG, Garcia EV, Batemen TM. The value and practice of attenuation correction for myocardial perfusion SPECT Imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Med. 2002;43:273–80.
110.
go back to reference O’Connor MK, Kemp B. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol. 2002;9:361–76.PubMedCrossRef O’Connor MK, Kemp B. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol. 2002;9:361–76.PubMedCrossRef
111.
go back to reference Hasegawa BH, Gingold EL, Reilly SM, Liew SC, Cann CE. Description of a simultaneous emission-transmission CT system. Proc SPIE. 1990;1231:50–60.CrossRef Hasegawa BH, Gingold EL, Reilly SM, Liew SC, Cann CE. Description of a simultaneous emission-transmission CT system. Proc SPIE. 1990;1231:50–60.CrossRef
112.
go back to reference Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. 1992;33:1881–7.PubMed Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. 1992;33:1881–7.PubMed
113.
go back to reference Blankespoor SC, Xu K, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci. 1996;43:2263–74.CrossRef Blankespoor SC, Xu K, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci. 1996;43:2263–74.CrossRef
114.
go back to reference Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with x-ray tube-based attenuation maps. J Nucl Med. 2000;41:1364–8.PubMed Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with x-ray tube-based attenuation maps. J Nucl Med. 2000;41:1364–8.PubMed
115.
go back to reference Hamann M, Aldridge M, Dickson J, Endozo R, Lozhkin K, Hutton BF. Evaluation of a low-dose/slow-rotating SPECT-CT system. Phys Med Biol. 2008;53:2495–508.PubMedCrossRef Hamann M, Aldridge M, Dickson J, Endozo R, Lozhkin K, Hutton BF. Evaluation of a low-dose/slow-rotating SPECT-CT system. Phys Med Biol. 2008;53:2495–508.PubMedCrossRef
116.
go back to reference Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging. 2007;34:1415–26.PubMedCrossRef Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging. 2007;34:1415–26.PubMedCrossRef
117.
go back to reference Beekman FJ, Hutton BF. Multi-modality imaging on track. Eur J Nucl Med Mol Imaging. 2007;34:1410–4.PubMedCrossRef Beekman FJ, Hutton BF. Multi-modality imaging on track. Eur J Nucl Med Mol Imaging. 2007;34:1410–4.PubMedCrossRef
118.
go back to reference Babla H, Bai C, Conwell R. A triple-head solid state camera for cardiac single photon emission tomography. Proc SPIE. 2006;6319. doi:10.1117/12.683765 Babla H, Bai C, Conwell R. A triple-head solid state camera for cardiac single photon emission tomography. Proc SPIE. 2006;6319. doi:10.​1117/​12.​683765
119.
go back to reference Kindem J, Bai C, Conwell R. CsI(Tl)/PIN solid state detectors for combined high resolution SPECT and CT imaging. Nuclear Science Symposium Medical Imaging Conference Record, 2010. IEEE. p. 1987–90. Kindem J, Bai C, Conwell R. CsI(Tl)/PIN solid state detectors for combined high resolution SPECT and CT imaging. Nuclear Science Symposium Medical Imaging Conference Record, 2010. IEEE. p. 1987–90.
120.
go back to reference Sowards-Emmerd D, Balakrishnan K, Wiener J, Shao L, Ye J. CBCT-subsystem performance of the multi-modality Brightview XCT system. Nuclear Science Symposium Medical Imaging Conference Record, 2009. IEEE. p. 3053–8. Sowards-Emmerd D, Balakrishnan K, Wiener J, Shao L, Ye J. CBCT-subsystem performance of the multi-modality Brightview XCT system. Nuclear Science Symposium Medical Imaging Conference Record, 2009. IEEE. p. 3053–8.
121.
go back to reference Nuyts J, Dupont P, Stroobants S, Bennick R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sonograms. IEEE Trans Med Imaging. 1999;18:393–403.PubMedCrossRef Nuyts J, Dupont P, Stroobants S, Bennick R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sonograms. IEEE Trans Med Imaging. 1999;18:393–403.PubMedCrossRef
122.
go back to reference Cade SC, Arridge S, Evans MJ, Hutton BF. Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. Med Phys. 2013;40:082506PubMedCrossRef Cade SC, Arridge S, Evans MJ, Hutton BF. Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. Med Phys. 2013;40:082506PubMedCrossRef
123.
124.
go back to reference Patton JA, Townsend DW, Hutton BF. Hybrid imaging technology: from dreams and vision to clinical devices. Semin Nucl Med. 2009;39:247–63.PubMedCrossRef Patton JA, Townsend DW, Hutton BF. Hybrid imaging technology: from dreams and vision to clinical devices. Semin Nucl Med. 2009;39:247–63.PubMedCrossRef
125.
go back to reference Hounsfield GN. Computerised transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.PubMedCrossRef Hounsfield GN. Computerised transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.PubMedCrossRef
126.
go back to reference Ambrose J. Computerised transverse axial scanning (tomography). 2. Clinical application. Br J Radiol. 1973;46:1023–47.PubMedCrossRef Ambrose J. Computerised transverse axial scanning (tomography). 2. Clinical application. Br J Radiol. 1973;46:1023–47.PubMedCrossRef
Metadata
Title
The origins of SPECT and SPECT/CT
Author
Brian F. Hutton
Publication date
01-05-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2014
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-013-2606-5

Other articles of this Special Issue 1/2014

European Journal of Nuclear Medicine and Molecular Imaging 1/2014 Go to the issue