Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 8/2011

01-08-2011 | Original Article

Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database

Authors: Livia Tossici-Bolt, John C. Dickson, Terez Sera, Robin de Nijs, Maria Claudia Bagnara, Catherine Jonsson, Egon Scheepers, Felicia Zito, Anita Seese, Pierre Malick Koulibaly, Ozlem L. Kapucu, Michel Koole, Maria Raith, Jean George, Markus Nowak Lonsdale, Wolfgang Münzing, Klaus Tatsch, Andrea Varrone

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 8/2011

Login to get access

Abstract

Purpose

A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [123I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved.

Methods

123I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the “Southampton” methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV).

Results

The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69–89%, ACSC range 87–116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001).

Conclusion

A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the correction for scatter and septal penetration is essential for accurate quantification.
Literature
1.
go back to reference Benamer HTS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503–10.PubMedCrossRef Benamer HTS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503–10.PubMedCrossRef
2.
go back to reference Catafau AM, Tolosa E, DaTSCAN Clinically Uncertain Parkinsonian Syndromes Study Group. Impact of dopamine transporter SPECT using 123I-ioflupane on diagnosis and management of patients with clinically uncertain parkinsonian syndromes. Mov Disord 2004;19:1175–82.PubMedCrossRef Catafau AM, Tolosa E, DaTSCAN Clinically Uncertain Parkinsonian Syndromes Study Group. Impact of dopamine transporter SPECT using 123I-ioflupane on diagnosis and management of patients with clinically uncertain parkinsonian syndromes. Mov Disord 2004;19:1175–82.PubMedCrossRef
3.
go back to reference McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007;6:305–13.PubMedCrossRef McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007;6:305–13.PubMedCrossRef
4.
go back to reference van Dyck CH, Seibyl JP, Malison RT, Laruelle M, Zoghbi SS, Baldwin RM, et al. Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatr Psychiatry 2002;10:36–43.PubMed van Dyck CH, Seibyl JP, Malison RT, Laruelle M, Zoghbi SS, Baldwin RM, et al. Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatr Psychiatry 2002;10:36–43.PubMed
5.
go back to reference Meyer PT, Sattler B, Lincke T, Seese A, Sabri O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 2003;44:839–45.PubMed Meyer PT, Sattler B, Lincke T, Seese A, Sabri O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 2003;44:839–45.PubMed
6.
go back to reference Koch W, Radau PE, Münzing W, Tatsch K. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging 2006;33:495–502.PubMedCrossRef Koch W, Radau PE, Münzing W, Tatsch K. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging 2006;33:495–502.PubMedCrossRef
7.
go back to reference Varrone A, Sansone V, Pellecchia MT, Amboni M, Salvatore E, De Michele G, et al. Comparison between a dual-head and a brain-dedicated SPECT system in the measurement of the loss of dopamine transporters with [(123)I]FP-CIT. Eur J Nucl Med Mol Imaging 2008;35:1343–9.PubMedCrossRef Varrone A, Sansone V, Pellecchia MT, Amboni M, Salvatore E, De Michele G, et al. Comparison between a dual-head and a brain-dedicated SPECT system in the measurement of the loss of dopamine transporters with [(123)I]FP-CIT. Eur J Nucl Med Mol Imaging 2008;35:1343–9.PubMedCrossRef
8.
go back to reference Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10:408–12.PubMedCrossRef Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10:408–12.PubMedCrossRef
9.
go back to reference Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34:2216–21.PubMed Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34:2216–21.PubMed
10.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef
11.
go back to reference Dickson JC, Tossici-Bolt L, Sera T, Erlandsson K, Varrone A, Tatsch K, et al. The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging 2010;37:23–35.PubMedCrossRef Dickson JC, Tossici-Bolt L, Sera T, Erlandsson K, Varrone A, Tatsch K, et al. The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging 2010;37:23–35.PubMedCrossRef
12.
go back to reference Cot A, Falcón C, Crespo C, Sempau J, Pareto D, Bullich S, et al. Absolute quantification in dopaminergic neurotransmission SPECT using a Monte Carlo-based scatter correction and fully 3-dimensional reconstruction. J Nucl Med 2005;46:1497–504.PubMed Cot A, Falcón C, Crespo C, Sempau J, Pareto D, Bullich S, et al. Absolute quantification in dopaminergic neurotransmission SPECT using a Monte Carlo-based scatter correction and fully 3-dimensional reconstruction. J Nucl Med 2005;46:1497–504.PubMed
13.
go back to reference Van Laere K, Varrone A, Booij J, Vander Borght T, Nobili F, Kapucu OL, et al. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2. Eur J Nucl Med Mol Imaging 2010;37:434–42.PubMedCrossRef Van Laere K, Varrone A, Booij J, Vander Borght T, Nobili F, Kapucu OL, et al. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2. Eur J Nucl Med Mol Imaging 2010;37:434–42.PubMedCrossRef
14.
go back to reference Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [(123)I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging 2006;33:1491–9.PubMedCrossRef Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [(123)I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging 2006;33:1491–9.PubMedCrossRef
15.
go back to reference Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004;49:N227–34.PubMedCrossRef Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004;49:N227–34.PubMedCrossRef
16.
go back to reference Fleiss JL. Statistical methods for rates and proportions. 2nd ed. New York: Wiley; 1981. Fleiss JL. Statistical methods for rates and proportions. 2nd ed. New York: Wiley; 1981.
17.
go back to reference Crespo C, Gallego J, Cot A, Falcón C, Bullich S, Pareto D, et al. Quantification of dopaminergic neurotransmission SPECT studies with 123I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation. Eur J Nucl Med Mol Imaging 2008;35(7):1334–42.PubMedCrossRef Crespo C, Gallego J, Cot A, Falcón C, Bullich S, Pareto D, et al. Quantification of dopaminergic neurotransmission SPECT studies with 123I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation. Eur J Nucl Med Mol Imaging 2008;35(7):1334–42.PubMedCrossRef
18.
go back to reference Dobbeleir AA, Hambÿe ASE, Franken PR. Influence of high-energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med 1999;26:655–8.PubMedCrossRef Dobbeleir AA, Hambÿe ASE, Franken PR. Influence of high-energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med 1999;26:655–8.PubMedCrossRef
19.
go back to reference Hashimoto J, Sasaki T, Ogawa K, Kubo A, Motomura N, Ichihara T, et al. Effects of scatter and attenuation correction on quantitative analysis of β-CIT brain SPECT. Nucl Med Commun 1999;20:159–65.PubMedCrossRef Hashimoto J, Sasaki T, Ogawa K, Kubo A, Motomura N, Ichihara T, et al. Effects of scatter and attenuation correction on quantitative analysis of β-CIT brain SPECT. Nucl Med Commun 1999;20:159–65.PubMedCrossRef
20.
go back to reference Fujita M, Varrone A, Kim KM, Watabe H, Zoghbi SS, Seneca N, et al. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [123I]epidepride SPECT. Eur J Nucl Med Mol Imaging 2004;31:644–54.PubMedCrossRef Fujita M, Varrone A, Kim KM, Watabe H, Zoghbi SS, Seneca N, et al. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [123I]epidepride SPECT. Eur J Nucl Med Mol Imaging 2004;31:644–54.PubMedCrossRef
21.
go back to reference Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996;37:1832–6.PubMed Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996;37:1832–6.PubMed
22.
go back to reference Inoue Y, Shirouzu I, Machida T, Yoshizawa Y, Akita F, Doi I, et al. Physical characteristics of low and medium energy collimators for 123I imaging and simultaneous dual-isotope imaging. Nucl Med Commun 2003;24:1195–202.PubMedCrossRef Inoue Y, Shirouzu I, Machida T, Yoshizawa Y, Akita F, Doi I, et al. Physical characteristics of low and medium energy collimators for 123I imaging and simultaneous dual-isotope imaging. Nucl Med Commun 2003;24:1195–202.PubMedCrossRef
23.
go back to reference de Nijs R, Holm S, Thomsen G, Ziebell M, Svarer C. Experimental determination of the weighting factor for the energy window subtraction-based downscatter correction for I-123 in brain SPECT studies. J Med Phys 2010;35(4):215–22.PubMedCrossRef de Nijs R, Holm S, Thomsen G, Ziebell M, Svarer C. Experimental determination of the weighting factor for the energy window subtraction-based downscatter correction for I-123 in brain SPECT studies. J Med Phys 2010;35(4):215–22.PubMedCrossRef
24.
go back to reference Tanaka M, Uehara S, Kojima A, Matsumoto M. Monte Carlo simulation of energy spectra for (123)I imaging. Phys Med Biol 2007;52:4409–25.PubMedCrossRef Tanaka M, Uehara S, Kojima A, Matsumoto M. Monte Carlo simulation of energy spectra for (123)I imaging. Phys Med Biol 2007;52:4409–25.PubMedCrossRef
25.
go back to reference de Nijs R, Svarer C. Combined backscatter and scatter correction for low count I-123 SPECT studies. J Nucl Med 2007;48(Suppl 2):424P. de Nijs R, Svarer C. Combined backscatter and scatter correction for low count I-123 SPECT studies. J Nucl Med 2007;48(Suppl 2):424P.
26.
go back to reference Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with (123)I SPECT. J Nucl Med 2003;44:1184–93.PubMed Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with (123)I SPECT. J Nucl Med 2003;44:1184–93.PubMed
27.
go back to reference Cot A, Sempau J, Pareto D, Bullich S, Pavía J, Calviño F, et al. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation. Phys Med Biol 2004;49:3125–36.PubMedCrossRef Cot A, Sempau J, Pareto D, Bullich S, Pavía J, Calviño F, et al. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation. Phys Med Biol 2004;49:3125–36.PubMedCrossRef
28.
go back to reference Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82. review article.PubMedCrossRef Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82. review article.PubMedCrossRef
29.
go back to reference Larsson A, Ljungberg M, Mo SJ, Riklund K, Johansson L. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in 123I brain SPECT imaging–a Monte Carlo study. Phys Med Biol 2006;51:5753–67.PubMedCrossRef Larsson A, Ljungberg M, Mo SJ, Riklund K, Johansson L. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in 123I brain SPECT imaging–a Monte Carlo study. Phys Med Biol 2006;51:5753–67.PubMedCrossRef
30.
go back to reference Rousset OG, Zaidi H. Correction for partial volume effects in emission tomography. In: Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 236–71. Rousset OG, Zaidi H. Correction for partial volume effects in emission tomography. In: Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 236–71.
31.
go back to reference Soret M, Koulibaly PM, Darcourt J, Buvat I. Partial volume effect correction in SPECT for striatal uptake measurements in patients with neurodegenerative diseases: impact upon patient classification. Eur J Nucl Med Mol Imaging 2006;33:1062–72.PubMedCrossRef Soret M, Koulibaly PM, Darcourt J, Buvat I. Partial volume effect correction in SPECT for striatal uptake measurements in patients with neurodegenerative diseases: impact upon patient classification. Eur J Nucl Med Mol Imaging 2006;33:1062–72.PubMedCrossRef
33.
go back to reference Blinkov SM, Glezer II. The human brain in figures and tables. A quantitative handbook. New York: Plenum; 1968. p. 166–71. Blinkov SM, Glezer II. The human brain in figures and tables. A quantitative handbook. New York: Plenum; 1968. p. 166–71.
34.
go back to reference Aylward EH, Li Q, Habbak R, Warren A, Pulsifer MB, Barta PE, et al. Basal ganglia volume in adults with Down syndrome. Psychiatry Res 1997;74:73–82.PubMedCrossRef Aylward EH, Li Q, Habbak R, Warren A, Pulsifer MB, Barta PE, et al. Basal ganglia volume in adults with Down syndrome. Psychiatry Res 1997;74:73–82.PubMedCrossRef
Metadata
Title
Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database
Authors
Livia Tossici-Bolt
John C. Dickson
Terez Sera
Robin de Nijs
Maria Claudia Bagnara
Catherine Jonsson
Egon Scheepers
Felicia Zito
Anita Seese
Pierre Malick Koulibaly
Ozlem L. Kapucu
Michel Koole
Maria Raith
Jean George
Markus Nowak Lonsdale
Wolfgang Münzing
Klaus Tatsch
Andrea Varrone
Publication date
01-08-2011
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 8/2011
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-1801-5

Other articles of this Issue 8/2011

European Journal of Nuclear Medicine and Molecular Imaging 8/2011 Go to the issue