Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2011

01-01-2011 | Original Article

Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data

Authors: V. Schulz, I. Torres-Espallardo, S. Renisch, Z. Hu, N. Ojha, P. Börnert, M. Perkuhn, T. Niendorf, W. M. Schäfer, H. Brockmann, T. Krohn, A. Buhl, R. W. Günther, F. M. Mottaghy, G. A. Krombach

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 1/2011

Login to get access

Abstract

Purpose

The combination of positron emission tomography (PET) and magnetic resonance (MR) tomography in a single device is anticipated to be the next step following PET/CT for future molecular imaging application. Compared to CT, the main advantages of MR are versatile soft tissue contrast and its capability to acquire functional information without ionizing radiation. However, MR is not capable of measuring a physical quantity that would allow a direct derivation of the attenuation values for high-energy photons.

Methods

To overcome this problem, we propose a fully automated approach that uses a dedicated T1-weighted MR sequence in combination with a customized image processing technique to derive attenuation maps for whole-body PET. The algorithm automatically identifies the outer contour of the body and the lungs using region-growing techniques in combination with an intensity analysis for automatic threshold estimation. No user interaction is required to generate the attenuation map.

Results

The accuracy of the proposed MR-based attenuation correction (AC) approach was evaluated in a clinical study using whole-body PET/CT and MR images of the same patients (n = 15). The segmentation of the body and lung contour (L-R directions) was evaluated via a four-point scale in comparison to the original MR image (mean values >3.8). PET images were reconstructed using elastically registered MR-based and CT-based (segmented and non-segmented) attenuation maps. The MR-based AC showed similar behaviour as CT-based AC and similar accuracy as offered by segmented CT-based AC. Standardized uptake value (SUV) comparisons with reference to CT-based AC using predefined attenuation coefficients showed the largest difference for bone lesions (mean value ± standard variation of SUVmax: −3.0% ± 3.9% for MR; −6.5% ± 4.1% for segmented CT). A blind comparison of PET images corrected with segmented MR-based, CT-based and segmented CT-based AC afforded identical lesion detectability, but slight differences in image quality were found.

Conclusion

Our MR‐based attenuation correction method offers similar correction accuracy as offered by segmented CT. According to the specialists involved in the blind study, these differences do not affect the diagnostic value of the PET images.
Literature
1.
go back to reference Kops ER, Herzog H. Alternative methods for attenuation correction for PET images in MR-PET scanners. IEEE Nucl Sci Symp Conf Rec 2007;6:4327–30. Kops ER, Herzog H. Alternative methods for attenuation correction for PET images in MR-PET scanners. IEEE Nucl Sci Symp Conf Rec 2007;6:4327–30.
2.
go back to reference Catana A, et al. Is accurate bone segmentation required for MR-based PET attenuation correction? Proc Intl Soc Mag Reson Med 2009;17:593. Catana A, et al. Is accurate bone segmentation required for MR-based PET attenuation correction? Proc Intl Soc Mag Reson Med 2009;17:593.
3.
go back to reference Beyer T, Weigert M, Quick HH, Pietrzyk U, Vogt F, Palm C, et al. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 2008;35:1142–6.CrossRefPubMed Beyer T, Weigert M, Quick HH, Pietrzyk U, Vogt F, Palm C, et al. MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 2008;35:1142–6.CrossRefPubMed
4.
go back to reference van der Kouwe AJ, et al. Challenges for MR-based attenuation correction in PET imaging of the head. Proc Intl Soc Mag Reson Med 2009;17:2810. van der Kouwe AJ, et al. Challenges for MR-based attenuation correction in PET imaging of the head. Proc Intl Soc Mag Reson Med 2009;17:2810.
5.
go back to reference Marshall HR, et al. Use of multi-spectral MR data to generate an attenuation map for application to PET/MR hybrid imaging. Proc Intl Soc Mag Reson Med 2009;17:4698. Marshall HR, et al. Use of multi-spectral MR data to generate an attenuation map for application to PET/MR hybrid imaging. Proc Intl Soc Mag Reson Med 2009;17:4698.
6.
go back to reference Hofmann M, et al. MR-based attenuation correction for PET/MR. Proc Intl Soc Mag Reson Med 2009;17:260. Hofmann M, et al. MR-based attenuation correction for PET/MR. Proc Intl Soc Mag Reson Med 2009;17:260.
7.
go back to reference Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009;50:520–6.CrossRefPubMed Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009;50:520–6.CrossRefPubMed
8.
go back to reference Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MR: a novel approach combining pattern recognition and atlas registration. J Nucl Med 2008;49:1875–83.CrossRefPubMed Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MR: a novel approach combining pattern recognition and atlas registration. J Nucl Med 2008;49:1875–83.CrossRefPubMed
10.
go back to reference Bai C, Shao L, Da Silva A, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 2003;50:1510–5.CrossRef Bai C, Shao L, Da Silva A, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 2003;50:1510–5.CrossRef
11.
go back to reference Zaidi H. Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 2007;244:639–42.CrossRefPubMed Zaidi H. Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 2007;244:639–42.CrossRefPubMed
12.
go back to reference Zaidi H, Montandon ML, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 2003;30(5):937–48.CrossRefPubMed Zaidi H, Montandon ML, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 2003;30(5):937–48.CrossRefPubMed
13.
go back to reference Salomon A, Schulz V, Brinks R, Schweizer B, Goedicke A. Iterative generation of attenuation maps in TOF-PET/MR using consistency conditions. SNM’s 56th Annual Meeting, 13–17 June 2009. Salomon A, Schulz V, Brinks R, Schweizer B, Goedicke A. Iterative generation of attenuation maps in TOF-PET/MR using consistency conditions. SNM’s 56th Annual Meeting, 13–17 June 2009.
14.
go back to reference Wu TH, Huang YH, Lee JJ, Wang SY, Su CT, Chen LK, et al. Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 2004;31:38–43.CrossRefPubMed Wu TH, Huang YH, Lee JJ, Wang SY, Su CT, Chen LK, et al. Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 2004;31:38–43.CrossRefPubMed
15.
go back to reference Zaidi H. Is radionuclide transmission scanning obsolete for dual-modality PET/CT systems? Eur J Nucl Med Mol Imaging 2007;34:815–8.CrossRefPubMed Zaidi H. Is radionuclide transmission scanning obsolete for dual-modality PET/CT systems? Eur J Nucl Med Mol Imaging 2007;34:815–8.CrossRefPubMed
16.
go back to reference Hu Z, Ojha N, Renisch S, Schulz V, Torres I, Buhl A, et al. MR-based attenuation correction for a whole-body sequential PET/MR system. IEEE Nucl Sci Symp Conf Rec 2009;M11–6. Hu Z, Ojha N, Renisch S, Schulz V, Torres I, Buhl A, et al. MR-based attenuation correction for a whole-body sequential PET/MR system. IEEE Nucl Sci Symp Conf Rec 2009;M11–6.
17.
go back to reference Sensakovic WF, Armato SG. Magnetic resonance imaging of the lung: automated segmentation methods. Methods of cancer diagnosis, therapy, and prognosis, Vol 2. Netherlands: Springer. Sensakovic WF, Armato SG. Magnetic resonance imaging of the lung: automated segmentation methods. Methods of cancer diagnosis, therapy, and prognosis, Vol 2. Netherlands: Springer.
18.
go back to reference Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron emission tomography: basic science and clinical practice. London: Springer; 2004. 3rd printing. Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron emission tomography: basic science and clinical practice. London: Springer; 2004. 3rd printing.
19.
go back to reference Wiemker R, Pekar V. Fast computation of isosurface contour spectra for volume visualization. Proc Computer Assisted Radiology and Surgery 2001;1230:389–94. Wiemker R, Pekar V. Fast computation of isosurface contour spectra for volume visualization. Proc Computer Assisted Radiology and Surgery 2001;1230:389–94.
20.
go back to reference Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 1999;18:712–21.CrossRefPubMed Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 1999;18:712–21.CrossRefPubMed
21.
go back to reference Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. IEEE Nucl Sci Symp Conf Rec 2006;3:1715–22.CrossRef Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. IEEE Nucl Sci Symp Conf Rec 2006;3:1715–22.CrossRef
22.
go back to reference Verschakelen JA, Van fraeyenhoven L, Laureys G, Demedts M, Baert AL. Differences in CT density between dependent and nondependent portions of the lung: influence of lung volume. AJR Am J Roentgenol 1993;161:713–7.PubMed Verschakelen JA, Van fraeyenhoven L, Laureys G, Demedts M, Baert AL. Differences in CT density between dependent and nondependent portions of the lung: influence of lung volume. AJR Am J Roentgenol 1993;161:713–7.PubMed
23.
go back to reference Tawhai MH, Nash MP, Lin CL, Hoffman EA. Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol 2009;107:912–20.CrossRefPubMed Tawhai MH, Nash MP, Lin CL, Hoffman EA. Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol 2009;107:912–20.CrossRefPubMed
24.
go back to reference Corder GW, Foreman DI. Nonparametric statistics for non-statisticians: a step-by-step approach. New Jersey: Wiley; 2009. Corder GW, Foreman DI. Nonparametric statistics for non-statisticians: a step-by-step approach. New Jersey: Wiley; 2009.
25.
go back to reference Keereman V, et al. Estimation of attenuation maps from UTE derived R2 image. Proc Intl Soc Mag Reson Med 2009;17:2774. Keereman V, et al. Estimation of attenuation maps from UTE derived R2 image. Proc Intl Soc Mag Reson Med 2009;17:2774.
26.
go back to reference Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 2006;19:765–80.CrossRefPubMed Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 2006;19:765–80.CrossRefPubMed
27.
go back to reference Ma J, Costelloe CM, Madewell JE, Hortobagyi GN, Green MC, Cao G, et al. Fast dixon-based multisequence and multiplanar MRI for whole-body detection of cancer metastases. J Magn Reson Imaging 2009;29(5):1154–62.CrossRefPubMed Ma J, Costelloe CM, Madewell JE, Hortobagyi GN, Green MC, Cao G, et al. Fast dixon-based multisequence and multiplanar MRI for whole-body detection of cancer metastases. J Magn Reson Imaging 2009;29(5):1154–62.CrossRefPubMed
28.
go back to reference Madsen MT. PET attenuation correction using mean attenuation coefficients: a simulation study. IEEE Trans Nucl Sci 1999;46(6):2172–6.CrossRef Madsen MT. PET attenuation correction using mean attenuation coefficients: a simulation study. IEEE Trans Nucl Sci 1999;46(6):2172–6.CrossRef
29.
go back to reference Beyer T, Bockisch A, Kühl H, Martinez MJ. Whole-body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med 2006;47(1):91–9.PubMed Beyer T, Bockisch A, Kühl H, Martinez MJ. Whole-body 18F-FDG PET/CT in the presence of truncation artifacts. J Nucl Med 2006;47(1):91–9.PubMed
30.
go back to reference Goerres GW, Ziegler SI, Burger C, Berthold T, Von Schulthess GK, Buck A. Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 2003;226:577–84.CrossRefPubMed Goerres GW, Ziegler SI, Burger C, Berthold T, Von Schulthess GK, Buck A. Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 2003;226:577–84.CrossRefPubMed
31.
go back to reference Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Højgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005;32:1167–75.CrossRefPubMed Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Højgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005;32:1167–75.CrossRefPubMed
Metadata
Title
Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data
Authors
V. Schulz
I. Torres-Espallardo
S. Renisch
Z. Hu
N. Ojha
P. Börnert
M. Perkuhn
T. Niendorf
W. M. Schäfer
H. Brockmann
T. Krohn
A. Buhl
R. W. Günther
F. M. Mottaghy
G. A. Krombach
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 1/2011
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1603-1

Other articles of this Issue 1/2011

European Journal of Nuclear Medicine and Molecular Imaging 1/2011 Go to the issue