Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 11/2010

01-11-2010 | Review Article

PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques

Authors: Habib Zaidi, Issam El Naqa

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 11/2010

Login to get access

Abstract

Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed.
Footnotes
1
The first-order derivative suppresses stretching and makes the contour behave like an elastic string. The second-order derivative suppresses bending and makes the model behave like a rigid rod.
 
Literature
1.
2.
go back to reference Hasegawa B, Zaidi H. Dual-modality imaging: more than the sum of its components. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 35–81.CrossRef Hasegawa B, Zaidi H. Dual-modality imaging: more than the sum of its components. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 35–81.CrossRef
3.
go back to reference Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004;4:737–47.PubMedCrossRef Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004;4:737–47.PubMedCrossRef
4.
go back to reference Fenwick JD, Tomé WA, Soisson ET, Mehta MP, Rock Mackie T. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 2006;16:199–208.PubMedCrossRef Fenwick JD, Tomé WA, Soisson ET, Mehta MP, Rock Mackie T. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 2006;16:199–208.PubMedCrossRef
5.
go back to reference Ling C, Zhang P, Archambault Y, Bocanek J, Tang G, Losasso T. Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys 2008;72:575–81.PubMed Ling C, Zhang P, Archambault Y, Bocanek J, Tang G, Losasso T. Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys 2008;72:575–81.PubMed
6.
7.
go back to reference ICRU. Prescribing, recording and reporting photon beam therapy. ICRU Report 62. Washington: International Commission on Radiation Units and Measurements; 1999. ICRU. Prescribing, recording and reporting photon beam therapy. ICRU Report 62. Washington: International Commission on Radiation Units and Measurements; 1999.
8.
go back to reference Austin-Seymour M, Chen GT, Rosenman J, Michalski J, Lindsley K, Goitein M. Tumor and target delineation: current research and future challenges. Int J Radiat Oncol Biol Phys 1995;33:1041–52.PubMed Austin-Seymour M, Chen GT, Rosenman J, Michalski J, Lindsley K, Goitein M. Tumor and target delineation: current research and future challenges. Int J Radiat Oncol Biol Phys 1995;33:1041–52.PubMed
10.
go back to reference Papiez L, Langer M. On probabilistically defined margins in radiation therapy. Phys Med Biol 2006;51:3921–39.PubMedCrossRef Papiez L, Langer M. On probabilistically defined margins in radiation therapy. Phys Med Biol 2006;51:3921–39.PubMedCrossRef
11.
go back to reference Khoo VS, Adams EJ, Saran F, Bedford JL, Perks JR, Warrington AP, et al. A comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas. Int J Radiat Oncol Biol Phys 2000;46:1309–17.PubMed Khoo VS, Adams EJ, Saran F, Bedford JL, Perks JR, Warrington AP, et al. A comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas. Int J Radiat Oncol Biol Phys 2000;46:1309–17.PubMed
12.
go back to reference Chaney E, Ibbott G, Hendee WR. Methods for image segmentation should be standardized and calibrated. Med Phys 2005;32:3507–10.PubMedCrossRef Chaney E, Ibbott G, Hendee WR. Methods for image segmentation should be standardized and calibrated. Med Phys 2005;32:3507–10.PubMedCrossRef
13.
go back to reference Ling C, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551–60.PubMedCrossRef Ling C, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551–60.PubMedCrossRef
14.
go back to reference Zaidi H, Alavi A. Current trends in PET and combined (PET/CT and PET/MR) systems design. PET Clin 2007;2:109–23.CrossRef Zaidi H, Alavi A. Current trends in PET and combined (PET/CT and PET/MR) systems design. PET Clin 2007;2:109–23.CrossRef
15.
go back to reference Chapman JD, Bradley JD, Eary JF, Haubner R, Larson SM, Michalski JM, et al. Molecular (functional) imaging for radiotherapy applications: an RTOG symposium. Int J Radiat Oncol Biol Phys 2003;55:294–301.PubMed Chapman JD, Bradley JD, Eary JF, Haubner R, Larson SM, Michalski JM, et al. Molecular (functional) imaging for radiotherapy applications: an RTOG symposium. Int J Radiat Oncol Biol Phys 2003;55:294–301.PubMed
16.
go back to reference Grégoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48:68S–77.PubMed Grégoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48:68S–77.PubMed
17.
go back to reference Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–99.PubMedCrossRef Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–99.PubMedCrossRef
18.
go back to reference Lecchi M, Fossati P, Elisei F, Orecchia R, Lucignani G. Current concepts on imaging in radiotherapy. Eur J Nucl Med Mol Imaging 2008;35:821–37.PubMedCrossRef Lecchi M, Fossati P, Elisei F, Orecchia R, Lucignani G. Current concepts on imaging in radiotherapy. Eur J Nucl Med Mol Imaging 2008;35:821–37.PubMedCrossRef
19.
go back to reference Mah D, Chen CC. Image guidance in radiation oncology treatment planning: the role of imaging technologies on the planning process. Semin Nucl Med 2008;38:114–8.PubMedCrossRef Mah D, Chen CC. Image guidance in radiation oncology treatment planning: the role of imaging technologies on the planning process. Semin Nucl Med 2008;38:114–8.PubMedCrossRef
20.
go back to reference Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 2006;50:4–14.PubMed Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 2006;50:4–14.PubMed
21.
go back to reference Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009;16:1108–33.PubMedCrossRef Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009;16:1108–33.PubMedCrossRef
22.
go back to reference Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001;5:127–42.PubMedCrossRef Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001;5:127–42.PubMedCrossRef
23.
go back to reference Udupa JK, Saha PK. Fuzzy connectedness and image segmentation. Proc IEEE 2003;91:1649–69.CrossRef Udupa JK, Saha PK. Fuzzy connectedness and image segmentation. Proc IEEE 2003;91:1649–69.CrossRef
24.
go back to reference Boudraa A, Zaidi H. Image segmentation techniques in nuclear medicine imaging. In: Zaidi H, editor. Quantitative analysis of nuclear medicine images. New York: Springer; 2006. p. 308–57.CrossRef Boudraa A, Zaidi H. Image segmentation techniques in nuclear medicine imaging. In: Zaidi H, editor. Quantitative analysis of nuclear medicine images. New York: Springer; 2006. p. 308–57.CrossRef
25.
26.
go back to reference van Baardwijk A, Baumert BG, Bosmans G, van Kroonenburgh M, Stroobants S, Gregoire V, et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 2006;32:245–60.PubMedCrossRef van Baardwijk A, Baumert BG, Bosmans G, van Kroonenburgh M, Stroobants S, Gregoire V, et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 2006;32:245–60.PubMedCrossRef
27.
go back to reference Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57:125–34.PubMedCrossRef Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57:125–34.PubMedCrossRef
28.
go back to reference Graves EE, Quon A, Loo Jr BW. RT_Image: an open-source tool for investigating PET in radiation oncology. Technol Cancer Res Treat 2007;6:111–21.PubMed Graves EE, Quon A, Loo Jr BW. RT_Image: an open-source tool for investigating PET in radiation oncology. Technol Cancer Res Treat 2007;6:111–21.PubMed
29.
go back to reference Ahn PH, Garg MK. Positron emission tomography/computed tomography for target delineation in head and neck cancers. Semin Nucl Med 2008;38:141–8.PubMedCrossRef Ahn PH, Garg MK. Positron emission tomography/computed tomography for target delineation in head and neck cancers. Semin Nucl Med 2008;38:141–8.PubMedCrossRef
30.
go back to reference Rahn AN, Baum RP, Adamietz IA, Adams S, Sengupta S, Mose S, et al. Value of 18F fluorodeoxyglucose positron emission tomography in radiotherapy planning of head-neck tumors. Strahlenther Onkol 1998;174:358–64. German.PubMedCrossRef Rahn AN, Baum RP, Adamietz IA, Adams S, Sengupta S, Mose S, et al. Value of 18F fluorodeoxyglucose positron emission tomography in radiotherapy planning of head-neck tumors. Strahlenther Onkol 1998;174:358–64. German.PubMedCrossRef
31.
go back to reference Munley MT, Marks LB, Scarfone C, Sibley GS, Patz Jr EF, Turkington TG, et al. Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 1999;23:105–14.PubMedCrossRef Munley MT, Marks LB, Scarfone C, Sibley GS, Patz Jr EF, Turkington TG, et al. Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 1999;23:105–14.PubMedCrossRef
32.
go back to reference Gross MW, Weber WA, Feldmann HJ, Bartenstein P, Schwaiger M, Molls M. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 1998;41:989–95.PubMed Gross MW, Weber WA, Feldmann HJ, Bartenstein P, Schwaiger M, Molls M. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 1998;41:989–95.PubMed
33.
go back to reference Kiffer JD, Berlangieri SU, Scott AM, Quong G, Feigen M, Schumer W, et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 1998;19:167–77.PubMedCrossRef Kiffer JD, Berlangieri SU, Scott AM, Quong G, Feigen M, Schumer W, et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 1998;19:167–77.PubMedCrossRef
34.
go back to reference Scarfone C, Jaszczak RJ, Gilland DR, Greer KL, Munley MT, Marks LB, et al. Quantitative pulmonary single photon emission computed tomography for radiotherapy applications. Med Phys 1999;26:1579–88.PubMedCrossRef Scarfone C, Jaszczak RJ, Gilland DR, Greer KL, Munley MT, Marks LB, et al. Quantitative pulmonary single photon emission computed tomography for radiotherapy applications. Med Phys 1999;26:1579–88.PubMedCrossRef
35.
go back to reference Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRef Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRef
36.
go back to reference Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of 18F-fluoro-2-deoxy–glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000;55:317–24.PubMedCrossRef Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of 18F-fluoro-2-deoxy–glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000;55:317–24.PubMedCrossRef
37.
go back to reference Levivier M, Wikier D, Goldman S, David P, Metens T, Massager N, et al. Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors. Technical note. J Neurosurg 2000;93 Suppl 3:233–8.PubMed Levivier M, Wikier D, Goldman S, David P, Metens T, Massager N, et al. Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors. Technical note. J Neurosurg 2000;93 Suppl 3:233–8.PubMed
38.
go back to reference Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.PubMed Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.PubMed
39.
go back to reference Paulino AC, Thorstad WL, Fox T. Role of fusion in radiotherapy treatment planning. Semin Nucl Med 2003;33:238–43.PubMedCrossRef Paulino AC, Thorstad WL, Fox T. Role of fusion in radiotherapy treatment planning. Semin Nucl Med 2003;33:238–43.PubMedCrossRef
40.
go back to reference Scarfone C, Lavely WC, Cmelak AJ, Delbeke D, Martin WH, Billheimer D, et al. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 2004;45:543–52.PubMed Scarfone C, Lavely WC, Cmelak AJ, Delbeke D, Martin WH, Billheimer D, et al. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 2004;45:543–52.PubMed
41.
go back to reference Yap JT, Carney JP, Hall NC, Townsend DW. Image-guided cancer therapy using PET/CT. Cancer J 2004;10:221–33.PubMedCrossRef Yap JT, Carney JP, Hall NC, Townsend DW. Image-guided cancer therapy using PET/CT. Cancer J 2004;10:221–33.PubMedCrossRef
42.
go back to reference Bradley JD, Perez CA, Dehdashti F, Siegel BA. Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 2004;45 Suppl 1:96S–101.PubMed Bradley JD, Perez CA, Dehdashti F, Siegel BA. Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 2004;45 Suppl 1:96S–101.PubMed
43.
go back to reference Brunetti J, Caggiano A, Rosenbluth B, Vialotti C. Technical aspects of positron emission tomography/computed tomography fusion planning. Semin Nucl Med 2008;38:129–36.PubMedCrossRef Brunetti J, Caggiano A, Rosenbluth B, Vialotti C. Technical aspects of positron emission tomography/computed tomography fusion planning. Semin Nucl Med 2008;38:129–36.PubMedCrossRef
45.
go back to reference Nestle U, Weber W, Hentschel M, Grosu A-L. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54:R1–25.PubMedCrossRef Nestle U, Weber W, Hentschel M, Grosu A-L. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54:R1–25.PubMedCrossRef
46.
go back to reference Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin Nucl Med 2008;38:137–40.PubMedCrossRef Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin Nucl Med 2008;38:137–40.PubMedCrossRef
47.
go back to reference Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48:78S–88.PubMed Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48:78S–88.PubMed
48.
go back to reference Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59:78–86.PubMed Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59:78–86.PubMed
49.
go back to reference Xing L, Siebers J, Keall P. Computational challenges for image-guided radiation therapy: framework and current research. Semin Radiat Oncol 2007;17:245–57.PubMedCrossRef Xing L, Siebers J, Keall P. Computational challenges for image-guided radiation therapy: framework and current research. Semin Radiat Oncol 2007;17:245–57.PubMedCrossRef
50.
go back to reference Stroom J, Blaauwgeers H, van Baardwijk A, Boersma L, Lebesque J, Theuws J, et al. Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 2007;69:267–75.PubMed Stroom J, Blaauwgeers H, van Baardwijk A, Boersma L, Lebesque J, Theuws J, et al. Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 2007;69:267–75.PubMed
51.
go back to reference Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003;55:1381–93.PubMed Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003;55:1381–93.PubMed
52.
go back to reference Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209–25.PubMedCrossRef Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209–25.PubMedCrossRef
53.
go back to reference Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:339–44.PubMed Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:339–44.PubMed
54.
go back to reference Kalff V, Hicks RJ, MacManus MP, Binns DS, McKenzie AF, Ware RE, et al. Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J Clin Oncol 2001;19:111–8.PubMed Kalff V, Hicks RJ, MacManus MP, Binns DS, McKenzie AF, Ware RE, et al. Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J Clin Oncol 2001;19:111–8.PubMed
55.
go back to reference Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51:923–31.PubMed Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51:923–31.PubMed
56.
go back to reference Fox JL, Rengan R, O’Meara W, Yorke E, Erdi Y, Nehmeh S, et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 2005;62:70–5.PubMedCrossRef Fox JL, Rengan R, O’Meara W, Yorke E, Erdi Y, Nehmeh S, et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 2005;62:70–5.PubMedCrossRef
57.
go back to reference van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68:771–8.PubMed van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68:771–8.PubMed
58.
go back to reference Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp LJ, Comans EFI, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 2006;64:435–48.PubMed Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp LJ, Comans EFI, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 2006;64:435–48.PubMed
59.
go back to reference Sovik A, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 2009;73:650–8.PubMed Sovik A, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 2009;73:650–8.PubMed
60.
go back to reference Basu S. Selecting the optimal image segmentation strategy in the era of multitracer multimodality imaging: a critical step for image-guided radiation therapy. Eur J Nucl Med Mol Imaging 2009;36:180–1.PubMedCrossRef Basu S. Selecting the optimal image segmentation strategy in the era of multitracer multimodality imaging: a critical step for image-guided radiation therapy. Eur J Nucl Med Mol Imaging 2009;36:180–1.PubMedCrossRef
61.
go back to reference Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.PubMedCrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.PubMedCrossRef
62.
go back to reference Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin 2007;2:235–49.CrossRef Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin 2007;2:235–49.CrossRef
63.
go back to reference Rahmim A, Rousset O, Zaidi H. Strategies for motion tracking and correction in PET. PET Clin 2007;2:251–66.CrossRef Rahmim A, Rousset O, Zaidi H. Strategies for motion tracking and correction in PET. PET Clin 2007;2:251–66.CrossRef
64.
go back to reference Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008;38:167–76.PubMedCrossRef Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008;38:167–76.PubMedCrossRef
65.
go back to reference Li T, Thorndyke B, Schreibmann E, Yang Y, Xing L. Model-based image reconstruction for four-dimensional PET. Med Phys 2006;33:1288–98.PubMedCrossRef Li T, Thorndyke B, Schreibmann E, Yang Y, Xing L. Model-based image reconstruction for four-dimensional PET. Med Phys 2006;33:1288–98.PubMedCrossRef
66.
go back to reference Qiao F, Pan T, Clark J, John W, Mawlawi O. Joint model of motion and anatomy for PET image reconstruction. Med Phys 2007;34:4626–39.PubMedCrossRef Qiao F, Pan T, Clark J, John W, Mawlawi O. Joint model of motion and anatomy for PET image reconstruction. Med Phys 2007;34:4626–39.PubMedCrossRef
67.
go back to reference Lamare F, Ledesma Carbayo MJ, Cresson T, Kontaxakis G, Santos A, Cheze Le Rest C, et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 2007;52:5187–204.PubMedCrossRef Lamare F, Ledesma Carbayo MJ, Cresson T, Kontaxakis G, Santos A, Cheze Le Rest C, et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 2007;52:5187–204.PubMedCrossRef
68.
go back to reference Rahmim A, Dinelle K, Cheng J-C, Shilov MA, Segars WP, Lidstone SC, et al. Accurate event-driven motion compensation in high-resolution PET incorporating scattered and random events. IEEE Trans Med Imaging 2008;27:1018–33.PubMedCrossRef Rahmim A, Dinelle K, Cheng J-C, Shilov MA, Segars WP, Lidstone SC, et al. Accurate event-driven motion compensation in high-resolution PET incorporating scattered and random events. IEEE Trans Med Imaging 2008;27:1018–33.PubMedCrossRef
69.
go back to reference Büther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009;50:674–81.PubMedCrossRef Büther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009;50:674–81.PubMedCrossRef
70.
go back to reference Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 2009;36:3654–70.PubMedCrossRef Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 2009;36:3654–70.PubMedCrossRef
71.
go back to reference Perez CA. Principles and practice of radiation oncology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. Perez CA. Principles and practice of radiation oncology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2004.
72.
go back to reference Otsu N. A thresholding selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9:62–6.CrossRef Otsu N. A thresholding selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9:62–6.CrossRef
73.
go back to reference Reddi SS, Rudin SF, Keshavan HR. An optimal multiple threshold scheme for image segmentation. IEEE Trans Syst Man Cybern 1984;14:661–5. Reddi SS, Rudin SF, Keshavan HR. An optimal multiple threshold scheme for image segmentation. IEEE Trans Syst Man Cybern 1984;14:661–5.
74.
go back to reference Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognit 1986;19:41–7.CrossRef Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognit 1986;19:41–7.CrossRef
75.
go back to reference Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognit 1993;26:1277–94.CrossRef Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognit 1993;26:1277–94.CrossRef
77.
go back to reference Keyes JW Jr. SUV: standard uptake value or silly useless value? J Nucl Med 1995;36:1836–9.PubMed Keyes JW Jr. SUV: standard uptake value or silly useless value? J Nucl Med 1995;36:1836–9.PubMed
78.
go back to reference Basu S, Zaidi H, Houseni M, Udupa J, Acton P, Torigian D, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 2007;37:223–39.PubMedCrossRef Basu S, Zaidi H, Houseni M, Udupa J, Acton P, Torigian D, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 2007;37:223–39.PubMedCrossRef
79.
go back to reference Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50:11S–20.PubMedCrossRef Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50:11S–20.PubMedCrossRef
80.
go back to reference Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80:2505–9.PubMedCrossRef Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80:2505–9.PubMedCrossRef
81.
go back to reference Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys 2002;53:353–9.PubMed Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys 2002;53:353–9.PubMed
82.
go back to reference Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47:1808–12.PubMed Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47:1808–12.PubMed
83.
go back to reference Ford EC, Kinahan PE, Hanlon L, Alessio A, Rajendran J, Schwartz DL, et al. Tumor delineation using PET in head and neck cancers: threshold contouring and lesion volumes. Med Phys 2006;33:4280–8.PubMedCrossRef Ford EC, Kinahan PE, Hanlon L, Alessio A, Rajendran J, Schwartz DL, et al. Tumor delineation using PET in head and neck cancers: threshold contouring and lesion volumes. Med Phys 2006;33:4280–8.PubMedCrossRef
84.
go back to reference Zaidi H. Organ volume estimation using SPECT. IEEE Trans Nucl Sci 1996;43:2174–82.CrossRef Zaidi H. Organ volume estimation using SPECT. IEEE Trans Nucl Sci 1996;43:2174–82.CrossRef
85.
go back to reference Yaremko B, Riauka T, Robinson D, Murray B, Alexander A, McEwan A, et al. Thresholding in PET images of static and moving targets. Phys Med Biol 2005;50:5969–82.PubMedCrossRef Yaremko B, Riauka T, Robinson D, Murray B, Alexander A, McEwan A, et al. Thresholding in PET images of static and moving targets. Phys Med Biol 2005;50:5969–82.PubMedCrossRef
86.
go back to reference Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;61:1385–92.PubMed Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;61:1385–92.PubMed
87.
go back to reference Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:1282–9.PubMed Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:1282–9.PubMed
88.
go back to reference Vees H, Senthamizhchelvan S, Miralbell R, Weber D, Ratib O, Zaidi H. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging 2009;36:182–93.PubMedCrossRef Vees H, Senthamizhchelvan S, Miralbell R, Weber D, Ratib O, Zaidi H. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging 2009;36:182–93.PubMedCrossRef
89.
go back to reference Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009;28:881–93.PubMedCrossRef Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009;28:881–93.PubMedCrossRef
90.
go back to reference Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMed Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMed
91.
go back to reference Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef
92.
go back to reference Brambilla M, Matheoud R, Secco C, Loi G, Krengli M, Inglese E. Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size. Med Phys 2008;35:1207–13.PubMedCrossRef Brambilla M, Matheoud R, Secco C, Loi G, Krengli M, Inglese E. Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size. Med Phys 2008;35:1207–13.PubMedCrossRef
93.
go back to reference Drever L, Robinson DM, McEwan A, Roa W. A local contrast based approach to threshold segmentation for PET target volume delineation. Med Phys 2006;33:1583–94.PubMedCrossRef Drever L, Robinson DM, McEwan A, Roa W. A local contrast based approach to threshold segmentation for PET target volume delineation. Med Phys 2006;33:1583–94.PubMedCrossRef
94.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed
95.
go back to reference Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C-M, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008;35:1989–99.PubMedCrossRef Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C-M, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008;35:1989–99.PubMedCrossRef
96.
go back to reference Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108–14.PubMed Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108–14.PubMed
97.
go back to reference Nehmeh SA, El-Zeftawy H, Greco C, Schwartz J, Erdi YE, Kirov A, et al. An iterative technique to segment PET lesions using a Monte Carlo based mathematical model. Med Phys 2009;36:4803–9.PubMedCrossRef Nehmeh SA, El-Zeftawy H, Greco C, Schwartz J, Erdi YE, Kirov A, et al. An iterative technique to segment PET lesions using a Monte Carlo based mathematical model. Med Phys 2009;36:4803–9.PubMedCrossRef
98.
go back to reference Greco C, Nehmeh SA, Schöder H, Gönen M, Raphael B, Stambuk HE, et al. Evaluation of different methods of 18F-FDG-PET target volume delineation in the radiotherapy of head and neck cancer. Am J Clin Oncol 2008;31:439–45.PubMedCrossRef Greco C, Nehmeh SA, Schöder H, Gönen M, Raphael B, Stambuk HE, et al. Evaluation of different methods of 18F-FDG-PET target volume delineation in the radiotherapy of head and neck cancer. Am J Clin Oncol 2008;31:439–45.PubMedCrossRef
99.
100.
go back to reference Huertas A, Medioni G. Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks. IEEE Trans Pattern Anal Mach Intell 1986;8:651–64.CrossRef Huertas A, Medioni G. Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks. IEEE Trans Pattern Anal Mach Intell 1986;8:651–64.CrossRef
101.
go back to reference Canny JF. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986;8:679–98.CrossRef Canny JF. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986;8:679–98.CrossRef
102.
go back to reference Drever LA, Roa W, McEwan A, Robinson D. Comparison of three image segmentation techniques for target volume delineation in positron emission tomography. J Appl Clin Med Phys 2007;8:93–109.PubMedCrossRef Drever LA, Roa W, McEwan A, Robinson D. Comparison of three image segmentation techniques for target volume delineation in positron emission tomography. J Appl Clin Med Phys 2007;8:93–109.PubMedCrossRef
103.
go back to reference Geets X, Lee J, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007;34:1427–38.PubMedCrossRef Geets X, Lee J, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007;34:1427–38.PubMedCrossRef
104.
go back to reference El Naqa I, Bradley J, Deasy J, Biehl K, Laforest R, Low D. Improved analysis of PET images for radiation therapy. 14th International Conference on the Use of Computers in Radiation Therapy. Seoul, Korea; 2004. pp 361–63. El Naqa I, Bradley J, Deasy J, Biehl K, Laforest R, Low D. Improved analysis of PET images for radiation therapy. 14th International Conference on the Use of Computers in Radiation Therapy. Seoul, Korea; 2004. pp 361–63.
105.
go back to reference Hsu C-Y, Liu C-Y, Chen C-M. Automatic segmentation of liver PET images. Comput Med Imaging Graph 2008;32:601–10.PubMedCrossRef Hsu C-Y, Liu C-Y, Chen C-M. Automatic segmentation of liver PET images. Comput Med Imaging Graph 2008;32:601–10.PubMedCrossRef
106.
go back to reference Li H, Thorstad WL, Biehl KJ, Laforest R, Su Y, Shoghi KI, et al. A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med Phys 2008;35:3711–21. Erratum. pp 5958.PubMedCrossRef Li H, Thorstad WL, Biehl KJ, Laforest R, Su Y, Shoghi KI, et al. A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med Phys 2008;35:3711–21. Erratum. pp 5958.PubMedCrossRef
107.
go back to reference Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science. 2nd ed. Cambridge: Cambridge University Press; 1999. Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science. 2nd ed. Cambridge: Cambridge University Press; 1999.
108.
go back to reference Xu C, Pham DL, Prince JL. Image segmentation using deformable models. In: Sonka M, Fitzpatrick JM, editors. Handbook of medical imaging: medical image processing and analysis. Bellingham: SPIE Press; 2002. pp. 129–74. Xu C, Pham DL, Prince JL. Image segmentation using deformable models. In: Sonka M, Fitzpatrick JM, editors. Handbook of medical imaging: medical image processing and analysis. Bellingham: SPIE Press; 2002. pp. 129–74.
109.
go back to reference Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988;1:321–31.CrossRef Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988;1:321–31.CrossRef
110.
go back to reference Kass M, Witkin A, Terzopoulos. Snakes: active contour models. First International Conference on Computer Vision. London; 1987. pp. 259–68. Kass M, Witkin A, Terzopoulos. Snakes: active contour models. First International Conference on Computer Vision. London; 1987. pp. 259–68.
111.
112.
go back to reference Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 1998;7:359–69.PubMedCrossRef Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 1998;7:359–69.PubMedCrossRef
113.
go back to reference Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988;79:12–49.CrossRef Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988;79:12–49.CrossRef
114.
go back to reference Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley; 2001. Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley; 2001.
115.
go back to reference Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 2000;22:4–37.CrossRef Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 2000;22:4–37.CrossRef
116.
go back to reference Clarke LP, Velthuizen RP, Phuphanich S, Schellenberg JD, Arrington JA, Silbiger M. MRI: stability of three supervised segmentation techniques. Magn Reson Imaging 1993;11:95–106.PubMedCrossRef Clarke LP, Velthuizen RP, Phuphanich S, Schellenberg JD, Arrington JA, Silbiger M. MRI: stability of three supervised segmentation techniques. Magn Reson Imaging 1993;11:95–106.PubMedCrossRef
117.
go back to reference Vaidyanathan M, Clarke LP, Velthuizen RP, Phuphanich S, Bensaid AM, Hall LO, et al. Comparison of supervised MRI segmentation methods for tumor volume determination during therapy. Magn Reson Imaging 1995;13:719–28.PubMedCrossRef Vaidyanathan M, Clarke LP, Velthuizen RP, Phuphanich S, Bensaid AM, Hall LO, et al. Comparison of supervised MRI segmentation methods for tumor volume determination during therapy. Magn Reson Imaging 1995;13:719–28.PubMedCrossRef
118.
go back to reference Suri JS, Singh S, Reden L. Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part I): a state-of-the-art review. Pattern Anal Appl 2002;5:46–76.CrossRef Suri JS, Singh S, Reden L. Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part I): a state-of-the-art review. Pattern Anal Appl 2002;5:46–76.CrossRef
119.
go back to reference El Naqa I, Yang Y. Techniques in the detection of microcalcification (MC) clusters in digital mammograms. In: Leondes T, editor. Medical imaging systems: technology and applications. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2005. pp. 15–36. El Naqa I, Yang Y. Techniques in the detection of microcalcification (MC) clusters in digital mammograms. In: Leondes T, editor. Medical imaging systems: technology and applications. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2005. pp. 15–36.
120.
go back to reference Boudraa AE, Champier J, Cinotti L, Bordet JC, Lavenne F, Mallet JJ. Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography. Comput Med Imaging Graph 1996;20:31–41.PubMedCrossRef Boudraa AE, Champier J, Cinotti L, Bordet JC, Lavenne F, Mallet JJ. Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography. Comput Med Imaging Graph 1996;20:31–41.PubMedCrossRef
121.
go back to reference Zhu W, Jiang T. Automation segmentation of PET image for brain tumors. IEEE Nucl Sci Symp Conf Rec 2003;4:2627–29. Zhu W, Jiang T. Automation segmentation of PET image for brain tumors. IEEE Nucl Sci Symp Conf Rec 2003;4:2627–29.
122.
go back to reference Kim J, Wen L, Eberl S, Fulton R, Feng DD. Use of anatomical priors in the segmentation of PET lung tumor images. IEEE Nucl Sci Symp Conf Rec 2007;4:4242–45. Kim J, Wen L, Eberl S, Fulton R, Feng DD. Use of anatomical priors in the segmentation of PET lung tumor images. IEEE Nucl Sci Symp Conf Rec 2007;4:4242–45.
123.
go back to reference Belhassen S and Zaidi H. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 2010;37:1309–1324. Belhassen S and Zaidi H. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 2010;37:1309–1324.
124.
go back to reference Zaidi H, Diaz-Gomez M, Boudraa AO, Slosman DO. Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 2002;47:1143–60.PubMedCrossRef Zaidi H, Diaz-Gomez M, Boudraa AO, Slosman DO. Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 2002;47:1143–60.PubMedCrossRef
125.
go back to reference Acton PD, Pilowsky LS, Kung HF, Ell PJ. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering. Eur J Nucl Med 1999;26:581–90.PubMedCrossRef Acton PD, Pilowsky LS, Kung HF, Ell PJ. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering. Eur J Nucl Med 1999;26:581–90.PubMedCrossRef
126.
go back to reference Bezdek JC, Hall LO, Clark MC, Goldgof DB, Clarke LP. Medical image analysis with fuzzy models. Stat Methods Med Res 1997;6:191–214.PubMedCrossRef Bezdek JC, Hall LO, Clark MC, Goldgof DB, Clarke LP. Medical image analysis with fuzzy models. Stat Methods Med Res 1997;6:191–214.PubMedCrossRef
127.
go back to reference Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv 1999;31:264–323.CrossRef Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv 1999;31:264–323.CrossRef
128.
go back to reference De Luca A, Termini S. A definition of non-probabilistic entropy in the setting of fuzzy sets theory. Inform Control 1972;20:301–12.CrossRef De Luca A, Termini S. A definition of non-probabilistic entropy in the setting of fuzzy sets theory. Inform Control 1972;20:301–12.CrossRef
129.
go back to reference Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 1992;3:672–82.PubMedCrossRef Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 1992;3:672–82.PubMedCrossRef
130.
go back to reference Pham DL, Prince JL. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 1999;20:57–68.CrossRef Pham DL, Prince JL. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 1999;20:57–68.CrossRef
131.
go back to reference Janssen MH, Aerts HJ, Ollers MC, Bosmans G, Lee JA, Buijsen J, et al. Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients. Int J Radiat Oncol Biol Phys 2009;73:456–65.PubMed Janssen MH, Aerts HJ, Ollers MC, Bosmans G, Lee JA, Buijsen J, et al. Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients. Int J Radiat Oncol Biol Phys 2009;73:456–65.PubMed
132.
go back to reference Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12:629–39.CrossRef Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12:629–39.CrossRef
133.
go back to reference Montgomery D, Amira A, Zaidi H. Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. Med Phys 2007;34:722–36.PubMedCrossRef Montgomery D, Amira A, Zaidi H. Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. Med Phys 2007;34:722–36.PubMedCrossRef
134.
go back to reference Aristophanous M, Penney BC, Martel MK, Pelizzari CA. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys 2007;34:4223–35.PubMedCrossRef Aristophanous M, Penney BC, Martel MK, Pelizzari CA. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys 2007;34:4223–35.PubMedCrossRef
135.
go back to reference Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 1999;18:897–908.PubMedCrossRef Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 1999;18:897–908.PubMedCrossRef
137.
go back to reference Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, et al. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007;52:3467–91.PubMedCrossRef Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, et al. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007;52:3467–91.PubMedCrossRef
138.
go back to reference Salzenstein F, Pieczynski W. Parameter estimation in hidden fuzzy Markovian fields and image segmentation. Graph Models Image Process 1997;59:205–20.CrossRef Salzenstein F, Pieczynski W. Parameter estimation in hidden fuzzy Markovian fields and image segmentation. Graph Models Image Process 1997;59:205–20.CrossRef
139.
go back to reference Long DT, King MA, Sheehan J. Comparative evaluation of image segmentation methods for volume quantitation in SPECT. Med Phys 1992;19:483–9.PubMedCrossRef Long DT, King MA, Sheehan J. Comparative evaluation of image segmentation methods for volume quantitation in SPECT. Med Phys 1992;19:483–9.PubMedCrossRef
140.
141.
go back to reference Guido A, Fuccio L, Rombi B, Castellucci P, Cecconi A, Bunkheila F, et al. Combined (18)F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;73:759–63.PubMed Guido A, Fuccio L, Rombi B, Castellucci P, Cecconi A, Bunkheila F, et al. Combined (18)F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;73:759–63.PubMed
142.
go back to reference Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMed Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMed
143.
go back to reference El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 2007;34:4738–49.PubMedCrossRef El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 2007;34:4738–49.PubMedCrossRef
144.
go back to reference Jannin P, Krupinski E, Warfield S. Validation in medical image processing. IEEE Trans Med Imaging 2006;25:1405–9.PubMedCrossRef Jannin P, Krupinski E, Warfield S. Validation in medical image processing. IEEE Trans Med Imaging 2006;25:1405–9.PubMedCrossRef
145.
go back to reference Slomka P, Baum R. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009;36:S44–55.PubMedCrossRef Slomka P, Baum R. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009;36:S44–55.PubMedCrossRef
146.
go back to reference Fiorino C, Reni M, Bolognesi A, Cattaneo GM, Calandrino R. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 1998;47:285–92.PubMedCrossRef Fiorino C, Reni M, Bolognesi A, Cattaneo GM, Calandrino R. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 1998;47:285–92.PubMedCrossRef
147.
go back to reference Giraud P, Elles S, Helfre S, De Rycke Y, Servois V, Carette MF, et al. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 2002;62:27–36.PubMedCrossRef Giraud P, Elles S, Helfre S, De Rycke Y, Servois V, Carette MF, et al. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 2002;62:27–36.PubMedCrossRef
148.
go back to reference Belhassen S, Llina Fuentes CS, Dekker A, De Ruysscher D, Ratib O, Zaidi H. Comparative methods for 18F-FDG PET-based delineation of target volumes in non-small-cell lung cancer [abstract]. J Nucl Med 2009;50:27P. Belhassen S, Llina Fuentes CS, Dekker A, De Ruysscher D, Ratib O, Zaidi H. Comparative methods for 18F-FDG PET-based delineation of target volumes in non-small-cell lung cancer [abstract]. J Nucl Med 2009;50:27P.
149.
go back to reference Boucher L, Rodrigue S, Lecomte R, Bénard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 2004;45:214–9.PubMed Boucher L, Rodrigue S, Lecomte R, Bénard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 2004;45:214–9.PubMed
150.
go back to reference El Naqa I, Low DA, Bradley JD, Vicic M, Deasy JO. Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. Med Phys 2006;33:3587–600.PubMedCrossRef El Naqa I, Low DA, Bradley JD, Vicic M, Deasy JO. Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. Med Phys 2006;33:3587–600.PubMedCrossRef
151.
go back to reference Turkington TG, Degrado TR, Sampson WH. Small spheres for lesion detection phantoms. IEEE Nucl Sci Symp Conf Rec 2001;4:2234–37. Turkington TG, Degrado TR, Sampson WH. Small spheres for lesion detection phantoms. IEEE Nucl Sci Symp Conf Rec 2001;4:2234–37.
152.
go back to reference Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI. Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008;18:37–42.PubMed Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI. Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008;18:37–42.PubMed
153.
go back to reference Zaidi H, Xu XG. Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annu Rev Biomed Eng 2007;9:471–500.PubMedCrossRef Zaidi H, Xu XG. Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annu Rev Biomed Eng 2007;9:471–500.PubMedCrossRef
154.
go back to reference Zaidi H, Tsui BMW. Review of computational anthropomorphic anatomical and physiological models. Proc IEEE 2009;97:1938–53.CrossRef Zaidi H, Tsui BMW. Review of computational anthropomorphic anatomical and physiological models. Proc IEEE 2009;97:1938–53.CrossRef
155.
go back to reference Segars WP. Development and application of the new dynamic NURBS-based cardiac-torso (NCAT) phantom [PhD Thesis]: University of North Carolina, Chapel Hill, NC, USA; 2001. Segars WP. Development and application of the new dynamic NURBS-based cardiac-torso (NCAT) phantom [PhD Thesis]: University of North Carolina, Chapel Hill, NC, USA; 2001.
156.
go back to reference Piegl L, Tiller W. The NURBS book. New York: Springer; 1997. Piegl L, Tiller W. The NURBS book. New York: Springer; 1997.
157.
go back to reference Segars WP, Tsui BMW. MCAT to XCAT: the evolution of 4D computerized phantoms for imaging research. Proc IEEE 2009;97:1954–68.CrossRef Segars WP, Tsui BMW. MCAT to XCAT: the evolution of 4D computerized phantoms for imaging research. Proc IEEE 2009;97:1954–68.CrossRef
158.
go back to reference Aristophanous M, Penney BC, Pelizzari CA. The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques. Med Phys 2008;35:3331–42.PubMedCrossRef Aristophanous M, Penney BC, Pelizzari CA. The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques. Med Phys 2008;35:3331–42.PubMedCrossRef
159.
go back to reference Tomei S, Reilhac A, Visvikis D, Odet C, Giammarile F, Mognetti T, et al. Development of a database of realistic simulated whole body 18F-FDG images for lymphoma. Proc IEEE Nuclear Science Symposium and Medical Imaging Conference. Dresden, Germany: IEEE; 2008. pp. 4958–63. Tomei S, Reilhac A, Visvikis D, Odet C, Giammarile F, Mognetti T, et al. Development of a database of realistic simulated whole body 18F-FDG images for lymphoma. Proc IEEE Nuclear Science Symposium and Medical Imaging Conference. Dresden, Germany: IEEE; 2008. pp. 4958–63.
160.
go back to reference Le Maitre A, Segars WP, Marache S, Reilhac A, Hatt M, Tomei S, et al. Incorporating patient specific variability in the simulation of realistic whole body 18F-FDG distributions for oncology applications. Proc IEEE 2009;97:2026–38.CrossRef Le Maitre A, Segars WP, Marache S, Reilhac A, Hatt M, Tomei S, et al. Incorporating patient specific variability in the simulation of realistic whole body 18F-FDG distributions for oncology applications. Proc IEEE 2009;97:2026–38.CrossRef
161.
go back to reference Zaidi H, Herrmann Scheurer A, Morel C. An object-oriented Monte Carlo simulator for 3D positron tomographs. Comput Methods Programs Biomed 1999;58:133–45.PubMedCrossRef Zaidi H, Herrmann Scheurer A, Morel C. An object-oriented Monte Carlo simulator for 3D positron tomographs. Comput Methods Programs Biomed 1999;58:133–45.PubMedCrossRef
162.
go back to reference Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 2004;49:4543–61.PubMedCrossRef Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 2004;49:4543–61.PubMedCrossRef
163.
go back to reference Harrison RL, Vannoy SD, Haynor DR, Gillispie SB, Kaplan MS, Lewellen TK. Preliminary experience with the photon history generator module for a public-domain simulation system for emission tomography. Records of IEEE Nuclear Science Symposium and Medical Imaging Conference; 1993. pp. 1154–58. Harrison RL, Vannoy SD, Haynor DR, Gillispie SB, Kaplan MS, Lewellen TK. Preliminary experience with the photon history generator module for a public-domain simulation system for emission tomography. Records of IEEE Nuclear Science Symposium and Medical Imaging Conference; 1993. pp. 1154–58.
164.
go back to reference Ay M, Zaidi H. Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam x-ray CT. Phys Med Biol 2005;50:4863–85.PubMedCrossRef Ay M, Zaidi H. Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam x-ray CT. Phys Med Biol 2005;50:4863–85.PubMedCrossRef
165.
go back to reference Kyriakou Y, Riedel T, Kalender WA. Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys Med Biol 2006;51:4567–86.PubMedCrossRef Kyriakou Y, Riedel T, Kalender WA. Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys Med Biol 2006;51:4567–86.PubMedCrossRef
166.
go back to reference Malusek A, Sandborg M, Carlsson GA. CTmod-A toolkit for Monte Carlo simulation of projections including scatter in computed tomography. Comput Methods Programs Biomed 2008;90:167–78.PubMedCrossRef Malusek A, Sandborg M, Carlsson GA. CTmod-A toolkit for Monte Carlo simulation of projections including scatter in computed tomography. Comput Methods Programs Biomed 2008;90:167–78.PubMedCrossRef
167.
go back to reference Ay M, Zaidi H. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 2006;33:1301–13.PubMedCrossRef Ay M, Zaidi H. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 2006;33:1301–13.PubMedCrossRef
168.
go back to reference Zhang YJ. A survey on evaluation methods for image segmentation. Pattern Recognit Lett 1996;29:1335–46. Zhang YJ. A survey on evaluation methods for image segmentation. Pattern Recognit Lett 1996;29:1335–46.
169.
go back to reference Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 2004;11:178–89.PubMedCrossRef Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 2004;11:178–89.PubMedCrossRef
170.
go back to reference Edwards PJ, Nijmeh AD, McGurk M, Odell E, Fenlon MR, Marsden PK, et al. Validation of PET imaging by alignment to histology slices. Int Conf Med Image Comput Comput Assist Interv 2005;8:968–75. Edwards PJ, Nijmeh AD, McGurk M, Odell E, Fenlon MR, Marsden PK, et al. Validation of PET imaging by alignment to histology slices. Int Conf Med Image Comput Comput Assist Interv 2005;8:968–75.
171.
go back to reference Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRef Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRef
172.
go back to reference Mamede M, Abreu ELP, Oliva MR, Nosé V, Mamon H, Gerbaudo VH. FDG-PET/CT tumor segmentation-derived indices of metabolic activity to assess response to neoadjuvant therapy and progression-free survival in esophageal cancer: correlation with histopathology results. Am J Clin Oncol 2007;30:377–88.PubMedCrossRef Mamede M, Abreu ELP, Oliva MR, Nosé V, Mamon H, Gerbaudo VH. FDG-PET/CT tumor segmentation-derived indices of metabolic activity to assess response to neoadjuvant therapy and progression-free survival in esophageal cancer: correlation with histopathology results. Am J Clin Oncol 2007;30:377–88.PubMedCrossRef
173.
go back to reference Burri RJ, Rangaswamy B, Kostakoglu L, Hoch B, Genden EM, Som PM, et al. Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck. Int J Radiat Oncol Biol Phys 2008;71:682–8.PubMed Burri RJ, Rangaswamy B, Kostakoglu L, Hoch B, Genden EM, Som PM, et al. Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck. Int J Radiat Oncol Biol Phys 2008;71:682–8.PubMed
174.
go back to reference Venel Y, Garhi H, de Muret A, Baulieu J-L, Barillot I, Prunier-Aesch C. Comparaison de six méthodes de segmentation du volume tumoral sur la 18F-FDG TEP-TDM avec le volume de référence anatomopathologique dans les cancers bronchopulmonaires non à petites cellules. Médecine Nucléaire 2008;32:339–53.CrossRef Venel Y, Garhi H, de Muret A, Baulieu J-L, Barillot I, Prunier-Aesch C. Comparaison de six méthodes de segmentation du volume tumoral sur la 18F-FDG TEP-TDM avec le volume de référence anatomopathologique dans les cancers bronchopulmonaires non à petites cellules. Médecine Nucléaire 2008;32:339–53.CrossRef
175.
go back to reference Seitz O, Chambron-Pinho N, Middendorp M, Sader R, Mack M, Vogl TJ, et al. 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology 2009;51:677–86.PubMedCrossRef Seitz O, Chambron-Pinho N, Middendorp M, Sader R, Mack M, Vogl TJ, et al. 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology 2009;51:677–86.PubMedCrossRef
176.
go back to reference Yu J, Li X, Xing L, Mu D, Fu Z, Sun X, et al. Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study. Int J Radiat Oncol Biol Phys 2009;75:1468–74.PubMed Yu J, Li X, Xing L, Mu D, Fu Z, Sun X, et al. Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study. Int J Radiat Oncol Biol Phys 2009;75:1468–74.PubMed
177.
go back to reference Yu HM, Liu YF, Hou M, Liu J, Li XN, Yu JM. Evaluation of gross tumor size using CT, (18)F-FDG PET, integrated (18)F-FDG PET/CT and pathological analysis in non-small cell lung cancer. Eur J Radiol 2009;75:1468–74. Yu HM, Liu YF, Hou M, Liu J, Li XN, Yu JM. Evaluation of gross tumor size using CT, (18)F-FDG PET, integrated (18)F-FDG PET/CT and pathological analysis in non-small cell lung cancer. Eur J Radiol 2009;75:1468–74.
178.
go back to reference Dahele M, Hwang D, Peressotti C, Sun L, Kusano M, Okhai S, et al. Developing a methodology for three-dimensional correlation of PET-CT images and whole-mount histopathology in non-small-cell lung cancer. Curr Oncol 2008;15:62–9.PubMedCrossRef Dahele M, Hwang D, Peressotti C, Sun L, Kusano M, Okhai S, et al. Developing a methodology for three-dimensional correlation of PET-CT images and whole-mount histopathology in non-small-cell lung cancer. Curr Oncol 2008;15:62–9.PubMedCrossRef
179.
go back to reference Christian N, Lee JA, Bol A, De Bast M, Jordan B, Grégoire V. The limitation of PET imaging for biological adaptive-IMRT assessed in animal models. Radiother Oncol 2009;91:101–16.PubMedCrossRef Christian N, Lee JA, Bol A, De Bast M, Jordan B, Grégoire V. The limitation of PET imaging for biological adaptive-IMRT assessed in animal models. Radiother Oncol 2009;91:101–16.PubMedCrossRef
180.
go back to reference Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRef Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRef
181.
go back to reference Topkan E, Yavuz AA, Aydin M, Onal C, Yapar F, Yavuz MN. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res 2008;27:41.PubMedCrossRef Topkan E, Yavuz AA, Aydin M, Onal C, Yapar F, Yavuz MN. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res 2008;27:41.PubMedCrossRef
182.
go back to reference Ford EC, Lavely WC, Frassica DA, Myers LT, Asrari F, Wahl RL, et al. Comparison of FDG-PET/CT and CT for delineation of lumpectomy cavity for partial breast irradiation. Int J Radiat Oncol Biol Phys 2008;71:595–602.PubMed Ford EC, Lavely WC, Frassica DA, Myers LT, Asrari F, Wahl RL, et al. Comparison of FDG-PET/CT and CT for delineation of lumpectomy cavity for partial breast irradiation. Int J Radiat Oncol Biol Phys 2008;71:595–602.PubMed
183.
go back to reference Visser EP, Philippens MEP, Kienhorst L, Kaanders JHAM, Corstens FHM, de Geus-Oei L-F, et al. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. J Nucl Med 2008;49:892–8.PubMedCrossRef Visser EP, Philippens MEP, Kienhorst L, Kaanders JHAM, Corstens FHM, de Geus-Oei L-F, et al. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. J Nucl Med 2008;49:892–8.PubMedCrossRef
184.
go back to reference Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Kirsch CM, Hellwig D. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning—an intraindividual comparison. Int J Radiat Oncol Biol Phys 2009;73:103–11.PubMed Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Kirsch CM, Hellwig D. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning—an intraindividual comparison. Int J Radiat Oncol Biol Phys 2009;73:103–11.PubMed
185.
go back to reference Zou KH, Wells WM, Kikinis R, Warfield SK. Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat Med 2004;23:1259–82.PubMedCrossRef Zou KH, Wells WM, Kikinis R, Warfield SK. Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat Med 2004;23:1259–82.PubMedCrossRef
186.
go back to reference Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 2010: in press. Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 2010: in press.
187.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.PubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.PubMed
188.
go back to reference Swensson RG. Unified measurement of observer performance in detecting and localizing target objects on images. Med Phys 1996;23:1709–25.PubMedCrossRef Swensson RG. Unified measurement of observer performance in detecting and localizing target objects on images. Med Phys 1996;23:1709–25.PubMedCrossRef
189.
go back to reference Zou KH, Warfield SK, Fielding JR, Tempany CM, William MW, Kaus MR, et al. Statistical validation based on parametric receiver operating characteristic analysis of continuous classification data. Acad Radiol 2003;10:1359–68.PubMedCrossRef Zou KH, Warfield SK, Fielding JR, Tempany CM, William MW, Kaus MR, et al. Statistical validation based on parametric receiver operating characteristic analysis of continuous classification data. Acad Radiol 2003;10:1359–68.PubMedCrossRef
190.
go back to reference Henkelman RM, Kay I, Bronskill MJ. Receiver operator characteristic (ROC) analysis without truth. Med Decis Making 1990;10:24–9.PubMedCrossRef Henkelman RM, Kay I, Bronskill MJ. Receiver operator characteristic (ROC) analysis without truth. Med Decis Making 1990;10:24–9.PubMedCrossRef
191.
go back to reference Beiden SV, Campbell G, Meier KL, Wagner RF. On the problem of ROC analysis without truth: the EM algorithm and the information matrix. Proc SPIE 2000;3981:126–34.CrossRef Beiden SV, Campbell G, Meier KL, Wagner RF. On the problem of ROC analysis without truth: the EM algorithm and the information matrix. Proc SPIE 2000;3981:126–34.CrossRef
192.
go back to reference Hoppin JW, Kupinski MA, Kastis GA, Clarkson E, Barrett HH. Objective comparison of quantitative imaging modalities without the use of a gold standard. IEEE Trans Med Imaging 2002;21:441–9.PubMedCrossRef Hoppin JW, Kupinski MA, Kastis GA, Clarkson E, Barrett HH. Objective comparison of quantitative imaging modalities without the use of a gold standard. IEEE Trans Med Imaging 2002;21:441–9.PubMedCrossRef
193.
go back to reference Kupinski MA, Hoppin JW, Clarkson E, Barrett HH, Kastis GA. Estimation in medical imaging without a gold standard. Acad Radiol 2002;9:290–7.PubMedCrossRef Kupinski MA, Hoppin JW, Clarkson E, Barrett HH, Kastis GA. Estimation in medical imaging without a gold standard. Acad Radiol 2002;9:290–7.PubMedCrossRef
194.
go back to reference Hoppin JW, Kupinski MA, Wilson DW, Peterson T, Gershman B, Kastis G, et al. Evaluating estimation techniques in medical imaging without a gold standard: experimental validation. Proc SPIE 2003;5034:230–7.CrossRef Hoppin JW, Kupinski MA, Wilson DW, Peterson T, Gershman B, Kastis G, et al. Evaluating estimation techniques in medical imaging without a gold standard: experimental validation. Proc SPIE 2003;5034:230–7.CrossRef
195.
go back to reference Zaidi H, Ruest T, Schoenahl F, Montandon M-L. Comparative evaluation of statistical brain MR image segmentation algorithms and their impact on partial volume effect correction in PET. Neuroimage 2006;32:1591–607.PubMedCrossRef Zaidi H, Ruest T, Schoenahl F, Montandon M-L. Comparative evaluation of statistical brain MR image segmentation algorithms and their impact on partial volume effect correction in PET. Neuroimage 2006;32:1591–607.PubMedCrossRef
196.
go back to reference Maes F, Vandermeulen D, Suetens P. Medical image registration using mutual information. Proc IEEE 2003;91:1699–722.CrossRef Maes F, Vandermeulen D, Suetens P. Medical image registration using mutual information. Proc IEEE 2003;91:1699–722.CrossRef
197.
go back to reference Viola P. Alignment by maximization of mutual information. [PhD Thesis]. Massachusetts Institute of Technology; Cambridge, 1995. Viola P. Alignment by maximization of mutual information. [PhD Thesis]. Massachusetts Institute of Technology; Cambridge, 1995.
198.
go back to reference Holden M, Hill DL, Denton ER, Jarosz JM, Cox TC, Rohlfing T, et al. Voxel similarity measures for 3-D serial MR brain image registration. IEEE Trans Med Imaging 2000;19:94–102.PubMedCrossRef Holden M, Hill DL, Denton ER, Jarosz JM, Cox TC, Rohlfing T, et al. Voxel similarity measures for 3-D serial MR brain image registration. IEEE Trans Med Imaging 2000;19:94–102.PubMedCrossRef
199.
go back to reference Aerts HJ, Bosmans G, van Baardwijk AA, Dekker AL, Oellers MC, Lambin P, et al. Stability of (18)F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys 2008;71:1402–7.PubMed Aerts HJ, Bosmans G, van Baardwijk AA, Dekker AL, Oellers MC, Lambin P, et al. Stability of (18)F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys 2008;71:1402–7.PubMed
200.
go back to reference Kumar R, Dhanpathi H, Basu S, Rubello D, Fanti S, Alavi A. Oncologic PET tracers beyond [(18)F]FDG and the novel quantitative approaches in PET imaging. Q J Nucl Med Mol Imaging 2008;52:50–65.PubMed Kumar R, Dhanpathi H, Basu S, Rubello D, Fanti S, Alavi A. Oncologic PET tracers beyond [(18)F]FDG and the novel quantitative approaches in PET imaging. Q J Nucl Med Mol Imaging 2008;52:50–65.PubMed
201.
go back to reference Lewis JS, Welch MJ, Tang L. Workshop on the production, application and clinical translation of “non-standard” PET nuclides: a meeting report. Q J Nucl Med Mol Imaging 2008;52:101–6.PubMed Lewis JS, Welch MJ, Tang L. Workshop on the production, application and clinical translation of “non-standard” PET nuclides: a meeting report. Q J Nucl Med Mol Imaging 2008;52:101–6.PubMed
202.
go back to reference Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med 2008;49 Suppl 2:64S–80.PubMedCrossRef Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med 2008;49 Suppl 2:64S–80.PubMedCrossRef
203.
go back to reference Dunphy MPS, Lewis JS. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 2009;50:106S–21.PubMedCrossRef Dunphy MPS, Lewis JS. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 2009;50:106S–21.PubMedCrossRef
204.
go back to reference Koch CJ, Evans SM. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 2003;510:285–92.PubMed Koch CJ, Evans SM. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 2003;510:285–92.PubMed
205.
go back to reference Grosu AL, Souvatzoglou M, Röper B, Dobritz M, Wiedenmann N, Jacob V, et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:541–51.PubMed Grosu AL, Souvatzoglou M, Röper B, Dobritz M, Wiedenmann N, Jacob V, et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:541–51.PubMed
206.
go back to reference Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 2008;49:573–86.PubMedCrossRef Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 2008;49:573–86.PubMedCrossRef
207.
go back to reference Tang BN, Van Simaeys G, Devriendt D, Sadeghi N, Dewitte O, Massager N, et al. Three-dimensional Gaussian model to define brain metastasis limits on (11)C-methionine PET. Radiother Oncol 2008;89:270–7.PubMedCrossRef Tang BN, Van Simaeys G, Devriendt D, Sadeghi N, Dewitte O, Massager N, et al. Three-dimensional Gaussian model to define brain metastasis limits on (11)C-methionine PET. Radiother Oncol 2008;89:270–7.PubMedCrossRef
208.
go back to reference Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007;6:23–30.PubMed Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007;6:23–30.PubMed
209.
go back to reference Wang H, Vees H, Miralbell R, Wissmeyer M, Steiner C, Ratib O, et al. (18)F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer. Radiother Oncol 2009;93:220–5.PubMedCrossRef Wang H, Vees H, Miralbell R, Wissmeyer M, Steiner C, Ratib O, et al. (18)F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer. Radiother Oncol 2009;93:220–5.PubMedCrossRef
210.
go back to reference Weber D, Wang H, Cozzi L, Dipasquale G, Khan H, Ratib O, et al. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol 2009;4:34.PubMedCrossRef Weber D, Wang H, Cozzi L, Dipasquale G, Khan H, Ratib O, et al. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol 2009;4:34.PubMedCrossRef
211.
go back to reference Patel DA, Chang ST, Goodman KA, Quon A, Thorndyke B, Gambhir SS, et al. Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Technol Cancer Res Treat 2007;6:31–6.PubMed Patel DA, Chang ST, Goodman KA, Quon A, Thorndyke B, Gambhir SS, et al. Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Technol Cancer Res Treat 2007;6:31–6.PubMed
212.
go back to reference Weber DC, Zilli T, Buchegger F, Casanova N, Haller G, Rouzaud M, et al. [(18)F]Fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 2008;3:44.PubMedCrossRef Weber DC, Zilli T, Buchegger F, Casanova N, Haller G, Rouzaud M, et al. [(18)F]Fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 2008;3:44.PubMedCrossRef
213.
go back to reference Zaidi H, Mawlawi O. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 2007;34:1525–8.PubMedCrossRef Zaidi H, Mawlawi O. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 2007;34:1525–8.PubMedCrossRef
214.
go back to reference Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 2008;38:199–208.PubMedCrossRef Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 2008;38:199–208.PubMedCrossRef
215.
go back to reference Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008;26:2155–61.PubMedCrossRef Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008;26:2155–61.PubMedCrossRef
216.
go back to reference Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 2006;65:726–32.PubMed Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 2006;65:726–32.PubMed
217.
go back to reference Davis JB, Reiner B, Huser M, Burger C, Szekely G, Ciernik IF. Assessment of (18)F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 2006;80:43–50.PubMedCrossRef Davis JB, Reiner B, Huser M, Burger C, Szekely G, Ciernik IF. Assessment of (18)F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 2006;80:43–50.PubMedCrossRef
218.
go back to reference Drever L, Roa W, McEwan A, Robinson D. Iterative threshold segmentation for PET target volume delineation. Med Phys 2007;34:1253–65.PubMedCrossRef Drever L, Roa W, McEwan A, Robinson D. Iterative threshold segmentation for PET target volume delineation. Med Phys 2007;34:1253–65.PubMedCrossRef
219.
go back to reference Vauclin S, Doyeux K, Hapdey S, Edet-Sanson A, Vera P, Gardin I. Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys Med Biol 2009;54:6901–16.PubMedCrossRef Vauclin S, Doyeux K, Hapdey S, Edet-Sanson A, Vera P, Gardin I. Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys Med Biol 2009;54:6901–16.PubMedCrossRef
220.
go back to reference Day E, Betler J, Parda D, Reitz B, Kirichenko A, Mohammadi S, et al. A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med Phys 2009;36:4349–58.PubMedCrossRef Day E, Betler J, Parda D, Reitz B, Kirichenko A, Mohammadi S, et al. A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med Phys 2009;36:4349–58.PubMedCrossRef
221.
go back to reference van Dalen JA, Hoffmann AL, Dicken V, Vogel WV, Wiering B, Ruers TJ, et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun 2007;28:485–93.PubMedCrossRef van Dalen JA, Hoffmann AL, Dicken V, Vogel WV, Wiering B, Ruers TJ, et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun 2007;28:485–93.PubMedCrossRef
222.
go back to reference Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu Y-C, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51–60.PubMedCrossRef Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu Y-C, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51–60.PubMedCrossRef
223.
go back to reference Vrieze O, Haustermans K, De Wever W, Lerut T, Van Cutsem E, Ectors N, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73:269–75.PubMedCrossRef Vrieze O, Haustermans K, De Wever W, Lerut T, Van Cutsem E, Ectors N, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73:269–75.PubMedCrossRef
224.
go back to reference van Loon J, Offermann C, Bosmans G, Wanders R, Dekker A, Borger J, et al. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother Oncol 2008;87:49–54.PubMedCrossRef van Loon J, Offermann C, Bosmans G, Wanders R, Dekker A, Borger J, et al. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother Oncol 2008;87:49–54.PubMedCrossRef
225.
go back to reference Breen SL, Publicover J, De Silva S, Pond G, Brock K, O’Sullivan B, et al. Intraobserver and interobserver variability in GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys 2007;68:763–70.PubMed Breen SL, Publicover J, De Silva S, Pond G, Brock K, O’Sullivan B, et al. Intraobserver and interobserver variability in GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys 2007;68:763–70.PubMed
226.
go back to reference Schinagl DA, Hoffmann AL, Vogel WV, van Dalen JA, Verstappen SM, Oyen WJ, et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol 2009;91:95–100.PubMedCrossRef Schinagl DA, Hoffmann AL, Vogel WV, van Dalen JA, Verstappen SM, Oyen WJ, et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol 2009;91:95–100.PubMedCrossRef
227.
go back to reference Murakami R, Uozumi H, Hirai T, Nishimura R, Katsuragawa S, Shiraishi S, et al. Impact of FDG-PET/CT fused imaging on tumor volume assessment of head-and-neck squamous cell carcinoma: intermethod and interobserver variations. Acta Radiol 2008;49:693–9.PubMedCrossRef Murakami R, Uozumi H, Hirai T, Nishimura R, Katsuragawa S, Shiraishi S, et al. Impact of FDG-PET/CT fused imaging on tumor volume assessment of head-and-neck squamous cell carcinoma: intermethod and interobserver variations. Acta Radiol 2008;49:693–9.PubMedCrossRef
228.
go back to reference El-Bassiouni M, Ciernik IF, Davis JB, El-Attar I, Reiner B, Burger C, et al. [18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:286–93.PubMed El-Bassiouni M, Ciernik IF, Davis JB, El-Attar I, Reiner B, Burger C, et al. [18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:286–93.PubMed
229.
go back to reference Deantonio L, Beldi D, Gambaro G, Loi G, Brambilla M, Inglese E, et al. FDG-PET/CT imaging for staging and radiotherapy treatment planning of head and neck carcinoma. Radiat Oncol 2008;3:29.PubMedCrossRef Deantonio L, Beldi D, Gambaro G, Loi G, Brambilla M, Inglese E, et al. FDG-PET/CT imaging for staging and radiotherapy treatment planning of head and neck carcinoma. Radiat Oncol 2008;3:29.PubMedCrossRef
Metadata
Title
PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques
Authors
Habib Zaidi
Issam El Naqa
Publication date
01-11-2010
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 11/2010
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1423-3

Other articles of this Issue 11/2010

European Journal of Nuclear Medicine and Molecular Imaging 11/2010 Go to the issue