Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 7/2009

01-07-2009 | Original Article

Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information

Authors: Christian Vanhove, Michel Defrise, Axel Bossuyt, Tony Lahoutte

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 7/2009

Login to get access

Abstract

Purpose

The purpose of this study was to demonstrate the feasibility of accurate quantification in pinhole SPECT using micro-CT information.

Methods

Pinhole SPECT scans were performed using a clinical dual-head gamma camera. Each pinhole SPECT scan was followed by a micro-CT acquisition. Functional and anatomical images were coregistered using six point sources visible with both modalities. Pinhole SPECT images were reconstructed iteratively. Attenuation correction was based on micro-CT information. Scatter correction was based on dual and triple-energy window methods. Phantom and animal experiments were performed. A phantom containing nine vials was filled with different concentrations of 99mTc. Three vials were also filled with CT contrast agent to increase attenuation. Activity concentrations measured on the pinhole SPECT images were compared with activity concentrations measured by the dose calibrator. In addition, 11 mice were injected with 99mTc-labelled Nanobodies. After acquiring functional and anatomical images, the animals were killed and the liver activity was measured using a gamma-counter. Activity concentrations measured on the reconstructed images were compared with activity concentrations measured with the gamma counter.

Results

The phantom experiments demonstrated an average error of −27.3 ± 15.9% between the activity concentrations measured on the uncorrected pinhole SPECT images and in the dose calibrator. This error decreased significantly to −0.1 ± 7.3% when corrections were applied for nonuniform attenuation and scatter. The animal experiment revealed an average error of −18.4 ± 11.9% between the activity concentrations measured on the uncorrected pinhole SPECT images and measured with the gamma counter. This error decreased to −7.9 ± 10.4% when attenuation and scatter correction was applied.

Conclusion

Attenuation correction obtained from micro-CT data in combination with scatter correction allows accurate quantification in pinhole SPECT.
Literature
1.
go back to reference Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44(2):291–315.PubMed Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44(2):291–315.PubMed
2.
go back to reference King M, Farncombe T. An overview of attenuation and scatter correction of planar and SPECT data for dosimetry studies. Cancer Biother Radiopharm 2003;18(2):181–90.PubMedCrossRef King M, Farncombe T. An overview of attenuation and scatter correction of planar and SPECT data for dosimetry studies. Cancer Biother Radiopharm 2003;18(2):181–90.PubMedCrossRef
3.
go back to reference Corbett JR, Ficaro EP. Clinical review of attenuation-corrected cardiac SPECT. J Nucl Cardiol 1999;6(1 Pt 1):54–68.PubMedCrossRef Corbett JR, Ficaro EP. Clinical review of attenuation-corrected cardiac SPECT. J Nucl Cardiol 1999;6(1 Pt 1):54–68.PubMedCrossRef
4.
go back to reference Singh B, Bateman TM, Case JA, Heller G. Attenuation artifact, attenuation correction, and the future of myocardial perfusion SPECT. J Nucl Cardiol 2007;14(2):153–64.PubMedCrossRef Singh B, Bateman TM, Case JA, Heller G. Attenuation artifact, attenuation correction, and the future of myocardial perfusion SPECT. J Nucl Cardiol 2007;14(2):153–64.PubMedCrossRef
5.
go back to reference Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 2003;20(4):2040–50.PubMedCrossRef Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 2003;20(4):2040–50.PubMedCrossRef
6.
go back to reference Schiffer WK, Mirrione MM, Dewey SL. Optimizing experimental protocols for quantitative behavioral imaging with 18F-FDG in rodents. J Nucl Med 2007;48(2):277–87.PubMed Schiffer WK, Mirrione MM, Dewey SL. Optimizing experimental protocols for quantitative behavioral imaging with 18F-FDG in rodents. J Nucl Med 2007;48(2):277–87.PubMed
7.
go back to reference Toyama H, Ichise M, Liow JS, Modell KJ, Vines DC, Esaki T, et al. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography. J Nucl Med 2004;45(8):1398–405.PubMed Toyama H, Ichise M, Liow JS, Modell KJ, Vines DC, Esaki T, et al. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography. J Nucl Med 2004;45(8):1398–405.PubMed
8.
go back to reference Chantler CT, Olsen K, Dragoset RA, Chang J, Kishore AR, Kotochigova SA, et al. X-ray form factor, attenuation, and scattering tables (version 2.1). Physics Laboratory, Physical Reference Data. Gaithersburg, MD: National Institute of Standards and Technology; 2005. http://physics.nist.gov/ffast. Chantler CT, Olsen K, Dragoset RA, Chang J, Kishore AR, Kotochigova SA, et al. X-ray form factor, attenuation, and scattering tables (version 2.1). Physics Laboratory, Physical Reference Data. Gaithersburg, MD: National Institute of Standards and Technology; 2005. http://​physics.​nist.​gov/​ffast.
9.
go back to reference Hwang AB, Franc BL, Gullberg GT, Hasegawa BH. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol 2008;53(9):2233–52.PubMedCrossRef Hwang AB, Franc BL, Gullberg GT, Hasegawa BH. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol 2008;53(9):2233–52.PubMedCrossRef
10.
go back to reference Hwang AB, Hasegawa BH. Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys 2005;32(9):2799–804.PubMedCrossRef Hwang AB, Hasegawa BH. Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys 2005;32(9):2799–804.PubMedCrossRef
11.
go back to reference Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 2005;50(22):R45–61.PubMedCrossRef Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 2005;50(22):R45–61.PubMedCrossRef
12.
go back to reference Vanhove C, Defrise M, Lahoutte T, Bossuyt A. Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT. Eur J Nucl Med Mol Imaging 2008;35(2):407–15.PubMedCrossRef Vanhove C, Defrise M, Lahoutte T, Bossuyt A. Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT. Eur J Nucl Med Mol Imaging 2008;35(2):407–15.PubMedCrossRef
13.
go back to reference Chow PL, Stout DB, Komisopoulou E, Chatziioannou AF. A method of image registration for small animal, multi-modality imaging. Phys Med Biol 2006;51(2):379–90.PubMedCrossRef Chow PL, Stout DB, Komisopoulou E, Chatziioannou AF. A method of image registration for small animal, multi-modality imaging. Phys Med Biol 2006;51(2):379–90.PubMedCrossRef
14.
go back to reference Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2(3):131–7.PubMedCrossRef Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2(3):131–7.PubMedCrossRef
15.
go back to reference Brown S, Bailey DL, Willowson K, Baldock C. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isot 2008;66(9):1206–12.PubMedCrossRef Brown S, Bailey DL, Willowson K, Baldock C. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isot 2008;66(9):1206–12.PubMedCrossRef
16.
go back to reference Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000;27(2):140–6.PubMedCrossRef Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000;27(2):140–6.PubMedCrossRef
17.
go back to reference Beque D, Nuyts J, Bormans G, Suetens P, Dupont P. Characterization of pinhole SPECT acquisition geometry. IEEE Trans Med Imaging 2003;22(5):599–612.PubMedCrossRef Beque D, Nuyts J, Bormans G, Suetens P, Dupont P. Characterization of pinhole SPECT acquisition geometry. IEEE Trans Med Imaging 2003;22(5):599–612.PubMedCrossRef
18.
go back to reference Beque D, Nuyts J, Suetens P, Bormans G. Optimization of geometrical calibration in pinhole SPECT. IEEE Trans Med Imaging 2005;24(2):180–90.PubMedCrossRef Beque D, Nuyts J, Suetens P, Bormans G. Optimization of geometrical calibration in pinhole SPECT. IEEE Trans Med Imaging 2005;24(2):180–90.PubMedCrossRef
19.
go back to reference Defrise M, Vanhove C, Nuyts J. Perturbative refinement of the geometric calibration in pinhole SPECT. IEEE Trans Med Imaging 2008;27(2):204–14.PubMedCrossRef Defrise M, Vanhove C, Nuyts J. Perturbative refinement of the geometric calibration in pinhole SPECT. IEEE Trans Med Imaging 2008;27(2):204–14.PubMedCrossRef
20.
go back to reference Vanhove C, Andreyev A, Defrise M, Nuyts J, Bossuyt A. Resolution recovery in pinhole SPECT based on multi-ray projections: a phantom study. Eur J Nucl Med Mol Imaging 2007;34(2):170–80.PubMedCrossRef Vanhove C, Andreyev A, Defrise M, Nuyts J, Bossuyt A. Resolution recovery in pinhole SPECT based on multi-ray projections: a phantom study. Eur J Nucl Med Mol Imaging 2007;34(2):170–80.PubMedCrossRef
21.
go back to reference Gullberg GT, Huesman RH, Malko JA, Pelc NJ, Budinger TF. An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 1985;30(8):799–816.PubMedCrossRef Gullberg GT, Huesman RH, Malko JA, Pelc NJ, Budinger TF. An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 1985;30(8):799–816.PubMedCrossRef
22.
go back to reference Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10(3):408–12.PubMedCrossRef Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10(3):408–12.PubMedCrossRef
23.
go back to reference Ogawa K, Chuga A, Ichihara T, Kuba A, Hashimoto S. Quantitative image reconstruction using position-dependent scatter correction in single photon emission CT. Conference record. 1992 Nuclear Science Symposium and Medical Imaging Conference, Orlando, 1993. p. 1011–1013. Ogawa K, Chuga A, Ichihara T, Kuba A, Hashimoto S. Quantitative image reconstruction using position-dependent scatter correction in single photon emission CT. Conference record. 1992 Nuclear Science Symposium and Medical Imaging Conference, Orlando, 1993. p. 1011–1013.
24.
go back to reference Gainkam LO, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, et al. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med 2008;49(5):788–95.PubMedCrossRef Gainkam LO, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, et al. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med 2008;49(5):788–95.PubMedCrossRef
25.
go back to reference Huang L, Gainkam LO, Caveliers V, Vanhove C, Keyaerts M, De Baetselier P, et al. SPECT imaging with 99 mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol 2008;10(3):167–75.PubMedCrossRef Huang L, Gainkam LO, Caveliers V, Vanhove C, Keyaerts M, De Baetselier P, et al. SPECT imaging with 99 mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol 2008;10(3):167–75.PubMedCrossRef
26.
go back to reference Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 2005;46(7):1194–200.PubMed Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 2005;46(7):1194–200.PubMed
27.
go back to reference Vastenhouw B, van der Have F, van der Linden AJ, von Oerthel L, Booij J, Burbach JP, et al. Movies of dopamine transporter occupancy with ultra-high resolution focusing pinhole SPECT. Mol Psychiatry 2007;12:984–87.PubMedCrossRef Vastenhouw B, van der Have F, van der Linden AJ, von Oerthel L, Booij J, Burbach JP, et al. Movies of dopamine transporter occupancy with ultra-high resolution focusing pinhole SPECT. Mol Psychiatry 2007;12:984–87.PubMedCrossRef
28.
go back to reference Li J, Jaszczak RJ, Coleman RE. Quantitative small field-of-view pinhole SPECT imaging – initial evaluation. IEEE Trans Nucl Sci 1995;42(4):1109–13.CrossRef Li J, Jaszczak RJ, Coleman RE. Quantitative small field-of-view pinhole SPECT imaging – initial evaluation. IEEE Trans Nucl Sci 1995;42(4):1109–13.CrossRef
29.
go back to reference Li J, Jaszczak RJ, Greer KL, Gilland DR, DeLong DM, Coleman RE. Evaluation of SPECT quantification of radiopharmaceutical distribution in canine myocardium. J Nucl Med 1995;36(2):278–86.PubMed Li J, Jaszczak RJ, Greer KL, Gilland DR, DeLong DM, Coleman RE. Evaluation of SPECT quantification of radiopharmaceutical distribution in canine myocardium. J Nucl Med 1995;36(2):278–86.PubMed
30.
go back to reference Vanhove C, Lahoutte T, Defrise M, Bossuyt A, Franken PR. Reproducibility of left ventricular volume and ejection fraction measurements in rat using pinhole gated SPECT. Eur J Nucl Med Mol Imaging 2005;32(2):211–20.PubMedCrossRef Vanhove C, Lahoutte T, Defrise M, Bossuyt A, Franken PR. Reproducibility of left ventricular volume and ejection fraction measurements in rat using pinhole gated SPECT. Eur J Nucl Med Mol Imaging 2005;32(2):211–20.PubMedCrossRef
31.
go back to reference Beekman F, Hutton BF. Multi-modality imaging on track. Eur J Nucl Med Mol Imaging 2007;34(9):1410–14.PubMedCrossRef Beekman F, Hutton BF. Multi-modality imaging on track. Eur J Nucl Med Mol Imaging 2007;34(9):1410–14.PubMedCrossRef
32.
go back to reference Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36(8):1476–88.PubMed Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36(8):1476–88.PubMed
33.
go back to reference Ljungberg M, King MA, Hademenos GJ, Strand SE. Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 1994;35(1):143–51.PubMed Ljungberg M, King MA, Hademenos GJ, Strand SE. Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 1994;35(1):143–51.PubMed
34.
go back to reference King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. J Nucl Med 1992;33(4):605–12.PubMed King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. J Nucl Med 1992;33(4):605–12.PubMed
Metadata
Title
Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information
Authors
Christian Vanhove
Michel Defrise
Axel Bossuyt
Tony Lahoutte
Publication date
01-07-2009
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 7/2009
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-009-1062-8

Other articles of this Issue 7/2009

European Journal of Nuclear Medicine and Molecular Imaging 7/2009 Go to the issue