Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2009

01-03-2009

Multimodality imaging: an update on PET/CT technology

Authors: Osama Mawlawi, David W. Townsend

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2009

Login to get access

Abstract

Introduction

Since their introduction in 2001, PET/CT systems have gained wide acceptance primarily due to their inherent ability to combine functional and structural information about the underlying disease state of the patient in a single imaging session. Their significance has also been documented with regard to their short imaging times, which minimize patient anxiety and image blurring due to patient motion. In the past seven years, PET/CT systems have replaced dedicated PET systems as the imaging modality of choice for diagnostic evaluation of oncology patients.

Objectives

The purpose of this article is to review the evolution of PET/CT systems and document their current status.

Discussion

Recent improvements in instrumentation are highlighted together with some outstanding issues that arise for specific PET/CT applications. These are followed by a description of some of the more common clinical applications of PET/CT imaging such as staging malignant disease, treatment planning, and monitoring therapy response. Finally, the future developments of PET/CT systems with regard to sensitivity, resolution, and new radiopharmaceuticals are discussed. The article concludes by presenting some issues concerning the next stage in the future of PET imaging, namely PET/MRI.
Literature
1.
go back to reference Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.PubMed Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.PubMed
2.
go back to reference Charron M, Beyer T, Bohnen NN, Kinahan PE, Dachille M, Jerin J, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 2000;25:905–10.PubMedCrossRef Charron M, Beyer T, Bohnen NN, Kinahan PE, Dachille M, Jerin J, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 2000;25:905–10.PubMedCrossRef
3.
go back to reference Meltzer CC, Luketich JD, Friedman D, Charron M, Strollo D, Meehan M, et al. Whole-body FDG positron emission tomographic imaging for staging esophageal cancer comparison with computed tomography. Clin Nucl Med 2000;25:882–7.PubMedCrossRef Meltzer CC, Luketich JD, Friedman D, Charron M, Strollo D, Meehan M, et al. Whole-body FDG positron emission tomographic imaging for staging esophageal cancer comparison with computed tomography. Clin Nucl Med 2000;25:882–7.PubMedCrossRef
4.
go back to reference Kluetz PG, Meltzer CC, Villemagne VL, Kinahan PE, Chander S, Martinelli MA, et al. Combined PET/CT imaging in oncology. Impact on patient management. Clin Positron Imaging 2000;3:223–30.PubMedCrossRef Kluetz PG, Meltzer CC, Villemagne VL, Kinahan PE, Chander S, Martinelli MA, et al. Combined PET/CT imaging in oncology. Impact on patient management. Clin Positron Imaging 2000;3:223–30.PubMedCrossRef
5.
go back to reference Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 2003;33:193–204.PubMedCrossRef Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 2003;33:193–204.PubMedCrossRef
6.
go back to reference Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046–53.PubMedCrossRef Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046–53.PubMedCrossRef
7.
go back to reference Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003;33:166–79.PubMedCrossRef Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003;33:166–79.PubMedCrossRef
8.
go back to reference Watson CC, Townsend DW, Bendriem B. PET/CT systems. In: Aarsvold WAJ, editor. Emission tomography. London: Elsevier Science; 2004. p. 195–212. Watson CC, Townsend DW, Bendriem B. PET/CT systems. In: Aarsvold WAJ, editor. Emission tomography. London: Elsevier Science; 2004. p. 195–212.
9.
go back to reference Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29:922–7.PubMedCrossRef Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29:922–7.PubMedCrossRef
10.
go back to reference Watson CC, Rappoport V, Faul D, Townsend DW, Carney JP. A method for calibrating the CT-based attenuation correction of PET in human tissue. IEEE Trans Nucl Sci 2006;53:102–7.CrossRef Watson CC, Rappoport V, Faul D, Townsend DW, Carney JP. A method for calibrating the CT-based attenuation correction of PET in human tissue. IEEE Trans Nucl Sci 2006;53:102–7.CrossRef
11.
go back to reference Carney JP, Townsend DW. CT-based attenuation correction for PET/CT scanners. In: von Schulthess GK, editor. Clinical molecular anatomic imaging: PET-CT and SPECT-CT. Philadelphia: Lippincott Williams and Wilkins; 2006. p. 54–62. Carney JP, Townsend DW. CT-based attenuation correction for PET/CT scanners. In: von Schulthess GK, editor. Clinical molecular anatomic imaging: PET-CT and SPECT-CT. Philadelphia: Lippincott Williams and Wilkins; 2006. p. 54–62.
12.
go back to reference Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983;24:73–8.PubMed Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983;24:73–8.PubMed
13.
go back to reference Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471–80.PubMed Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471–80.PubMed
14.
go back to reference Conti M, Townsend DW, Casey M, Lois C, Jakoby BW, Long MJ, et al. Assessment of the clinical potential of a time-of-flight PET/CT scanner with less than 600 ps timing resolution. J Nucl Med 2008;49:411. Conti M, Townsend DW, Casey M, Lois C, Jakoby BW, Long MJ, et al. Assessment of the clinical potential of a time-of-flight PET/CT scanner with less than 600 ps timing resolution. J Nucl Med 2008;49:411.
16.
go back to reference Jakoby BW, Bercier Y, Watson CC, Rappoport V, Young J, Bendriem DW. Physical performance and clinical workflow of a new LSO HI-REZ PET/CT scanner. Nuclear Science Symposium Conference Record, 2006, IEEE, vol. 5, p 3130–4. Jakoby BW, Bercier Y, Watson CC, Rappoport V, Young J, Bendriem DW. Physical performance and clinical workflow of a new LSO HI-REZ PET/CT scanner. Nuclear Science Symposium Conference Record, 2006, IEEE, vol. 5, p 3130–4.
17.
go back to reference Townsend DW, Jakoby B, Long MJ, Carr C, Hubner K, Guglielmo C. Performance and clinical workflow of a new combined PET/CT scanner. J Nucl Med 2007;48:437. Townsend DW, Jakoby B, Long MJ, Carr C, Hubner K, Guglielmo C. Performance and clinical workflow of a new combined PET/CT scanner. J Nucl Med 2007;48:437.
18.
go back to reference Kinahan P, Rodgers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8.CrossRef Kinahan P, Rodgers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8.CrossRef
19.
go back to reference Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16:145–58.PubMedCrossRef Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16:145–58.PubMedCrossRef
20.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef
21.
go back to reference Comtat C, Kinahan P, Defrise M, Michel C, Townsend DW. Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci 1998;45:1083–9.CrossRef Comtat C, Kinahan P, Defrise M, Michel C, Townsend DW. Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci 1998;45:1083–9.CrossRef
22.
go back to reference Comtat C, Bataille F, Michel C, Jones JP, Sibomana M, Janeiro L, et al. OSEM-3D reconstruction strategies for the ECAT HRRT. Nuclear Science Symposium Conference Record, 2004, IEEE, vol. 6, p 3492–6. Comtat C, Bataille F, Michel C, Jones JP, Sibomana M, Janeiro L, et al. OSEM-3D reconstruction strategies for the ECAT HRRT. Nuclear Science Symposium Conference Record, 2004, IEEE, vol. 6, p 3492–6.
23.
go back to reference Liu X, Comtat C, Michel C, Kinahan P, Defrise M, Townsend D. Comparison of 3-D reconstruction with 3D-OSEM and with FORE+OSEM for PET. IEEE Trans Med Imaging 2001;20:804–14.PubMedCrossRef Liu X, Comtat C, Michel C, Kinahan P, Defrise M, Townsend D. Comparison of 3-D reconstruction with 3D-OSEM and with FORE+OSEM for PET. IEEE Trans Med Imaging 2001;20:804–14.PubMedCrossRef
24.
go back to reference Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907–21.PubMedCrossRef Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907–21.PubMedCrossRef
25.
go back to reference de Juan R, Seifert B, Berthold T, von Schulthess GK, Goerres GW. Clinical evaluation of a breathing protocol for PET/CT. Eur Radiol 2004;14:1118–23.PubMedCrossRef de Juan R, Seifert B, Berthold T, von Schulthess GK, Goerres GW. Clinical evaluation of a breathing protocol for PET/CT. Eur Radiol 2004;14:1118–23.PubMedCrossRef
26.
go back to reference Klein GJ, Reutter BW, Ho MH, Reed JH, Huesman RH. Real-time system for respiratory-cardiac gating in positron tomography. IEEE Trans Nucl Sci 1998;45:2139–43.CrossRef Klein GJ, Reutter BW, Ho MH, Reed JH, Huesman RH. Real-time system for respiratory-cardiac gating in positron tomography. IEEE Trans Nucl Sci 1998;45:2139–43.CrossRef
27.
go back to reference Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43:876–81.PubMed Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43:876–81.PubMed
28.
go back to reference Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, et al. Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J Nucl Med 2003;44:1644–8.PubMed Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, et al. Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J Nucl Med 2003;44:1644–8.PubMed
29.
go back to reference Thorndyke B, Schreibmann E, Maxim P, Loo B, Boyer A, Koong A, et al. Enhancing 4D PET through retrospective stacking. Med Phys 2005;32:2094. Thorndyke B, Schreibmann E, Maxim P, Loo B, Boyer A, Koong A, et al. Enhancing 4D PET through retrospective stacking. Med Phys 2005;32:2094.
30.
go back to reference Klein GJ, Huesman RH. Four-dimensional processing of deformable cardiac PET data. Med Image Anal 2002;6:29–46.PubMedCrossRef Klein GJ, Huesman RH. Four-dimensional processing of deformable cardiac PET data. Med Image Anal 2002;6:29–46.PubMedCrossRef
31.
go back to reference Livieratos L, Stegger L, Bloomfield PM, Schafers K, Bailey DL, Camici PG. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol 2005;50:3313–22.PubMedCrossRef Livieratos L, Stegger L, Bloomfield PM, Schafers K, Bailey DL, Camici PG. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol 2005;50:3313–22.PubMedCrossRef
32.
go back to reference Lamare F, Cresson T, Savean J, Cheze Le Rest C, Reader AJ, Visvikis D. Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys Med Biol 2007;52:121–40.PubMedCrossRef Lamare F, Cresson T, Savean J, Cheze Le Rest C, Reader AJ, Visvikis D. Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys Med Biol 2007;52:121–40.PubMedCrossRef
33.
go back to reference Lalush DS, Cui L, Tsui B. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT. Nuclear Science Symposium Conference Record, 1996, IEEE, vol. 3. Lalush DS, Cui L, Tsui B. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT. Nuclear Science Symposium Conference Record, 1996, IEEE, vol. 3.
34.
go back to reference Qi J, Huesmans RH. List mode reconstruction for PET with motion compensation: a simulation study. Proceedings Nuclear Symposium Biological Imaging Conference, 2002, p 413–6. Qi J, Huesmans RH. List mode reconstruction for PET with motion compensation: a simulation study. Proceedings Nuclear Symposium Biological Imaging Conference, 2002, p 413–6.
35.
go back to reference Gilland DR, Mair BA, Bowsher JE, Jaszczak RJ. Simulations reconstruction and motion estimation for gated cardiac ECT. IEEE Trans Nucl Sci 2002;49:2344–9.CrossRef Gilland DR, Mair BA, Bowsher JE, Jaszczak RJ. Simulations reconstruction and motion estimation for gated cardiac ECT. IEEE Trans Nucl Sci 2002;49:2344–9.CrossRef
36.
go back to reference Cao Z, GD R, Mair BA, Jaszczak RJ. Three-dimensional motion estimation with image reconstruction for gated cardiac. ECT IEEE Trans Nucl Sci. 2003;50:384–8. Cao Z, GD R, Mair BA, Jaszczak RJ. Three-dimensional motion estimation with image reconstruction for gated cardiac. ECT IEEE Trans Nucl Sci. 2003;50:384–8.
37.
go back to reference Jacobson MW, Fessler JA. Joint estimation of image and deformation parameters in motion-correction PET. Nuclear Symposium and Medical Imaging Conference Record, 2004, IEEE, vol. 5, p 3290–4. Jacobson MW, Fessler JA. Joint estimation of image and deformation parameters in motion-correction PET. Nuclear Symposium and Medical Imaging Conference Record, 2004, IEEE, vol. 5, p 3290–4.
38.
go back to reference Rahmim A, Bloomfield P, Houle S, Lenox M, Michel C, Buckley KR, et al. Motion compensation in histogram-mode and list-mode EM reconstructions: beyond the event-driven approach. IEEE Trans Nucl Sci 2004;51:2588–96.CrossRef Rahmim A, Bloomfield P, Houle S, Lenox M, Michel C, Buckley KR, et al. Motion compensation in histogram-mode and list-mode EM reconstructions: beyond the event-driven approach. IEEE Trans Nucl Sci 2004;51:2588–96.CrossRef
39.
go back to reference Gilland DR, Mair BA, Sun J. Joint 4D reconstruction and motion estimation in gated cardiac ECT. Proceedings of the Eighth International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Salt Lake City, 6–9 July 2005. p 303–6. Gilland DR, Mair BA, Sun J. Joint 4D reconstruction and motion estimation in gated cardiac ECT. Proceedings of the Eighth International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Salt Lake City, 6–9 July 2005. p 303–6.
40.
go back to reference Gravier E, Yang Y. Motion-compensated reconstruction of tomographic image sequences. IEEE Trans Nucl Sci 2005;51:51–6.CrossRef Gravier E, Yang Y. Motion-compensated reconstruction of tomographic image sequences. IEEE Trans Nucl Sci 2005;51:51–6.CrossRef
41.
go back to reference Qiao F, Pan T, Clark JW Jr, Mawlawi OR. A motion-incorporated reconstruction method for gated PET studies. Phys Med Biol 2006;51:3769–83.PubMedCrossRef Qiao F, Pan T, Clark JW Jr, Mawlawi OR. A motion-incorporated reconstruction method for gated PET studies. Phys Med Biol 2006;51:3769–83.PubMedCrossRef
42.
go back to reference Nehmeh SA, Erdi YE, Meirelles G, et al. Deep-inspiration breathhold PET/CTof the thorax. J Nucl Med 2006;48:22–6. Nehmeh SA, Erdi YE, Meirelles G, et al. Deep-inspiration breathhold PET/CTof the thorax. J Nucl Med 2006;48:22–6.
43.
go back to reference Meirelles G, Erdi YE, Nehmeh SA, et al. Deep-inspiration breathhold PET/CT: clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med 2006;48:712–9.CrossRef Meirelles G, Erdi YE, Nehmeh SA, et al. Deep-inspiration breathhold PET/CT: clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med 2006;48:712–9.CrossRef
44.
go back to reference Kawano T, Ohtake E, Inoue T. Deep-inspiration breath hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J Nucl Med 2008;49:1223–31.PubMedCrossRef Kawano T, Ohtake E, Inoue T. Deep-inspiration breath hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J Nucl Med 2008;49:1223–31.PubMedCrossRef
45.
go back to reference Soret M, Bacharach SL, Buvat I. Partial volume effect in PET tumor imaging. J Nucl Med 2007;48:932.PubMedCrossRef Soret M, Bacharach SL, Buvat I. Partial volume effect in PET tumor imaging. J Nucl Med 2007;48:932.PubMedCrossRef
46.
go back to reference Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.PubMed Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.PubMed
47.
go back to reference Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRef Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRef
48.
go back to reference Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMed Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMed
49.
go back to reference Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47:1808–12.PubMed Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47:1808–12.PubMed
50.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed
51.
go back to reference Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80(12 Suppl):2505–9.PubMedCrossRef Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80(12 Suppl):2505–9.PubMedCrossRef
52.
go back to reference Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef
53.
go back to reference Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A, et al. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108–14.PubMed Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A, et al. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108–14.PubMed
54.
go back to reference Drever L, Roa W, McEwan A, Robinson D. Iterative threshold segmentation for PET target volume delineation. Med Phys 2007;34:1253–65.PubMedCrossRef Drever L, Roa W, McEwan A, Robinson D. Iterative threshold segmentation for PET target volume delineation. Med Phys 2007;34:1253–65.PubMedCrossRef
55.
go back to reference Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004;45:1287–92.PubMed Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004;45:1287–92.PubMed
56.
go back to reference Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med 2005;46:1481–7.PubMed Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med 2005;46:1481–7.PubMed
57.
go back to reference Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006;47:885–95.PubMed Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006;47:885–95.PubMed
58.
go back to reference Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol 2005;50:2749–63.PubMedCrossRef Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol 2005;50:2749–63.PubMedCrossRef
59.
go back to reference Vandenberghe S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Phys Med Biol 2006;51:1603–21.PubMedCrossRef Vandenberghe S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Phys Med Biol 2006;51:1603–21.PubMedCrossRef
60.
go back to reference Cho S, Li Q, Ahn S, Bai B, Leahy RM. Iterative image reconstruction using inverse fourier rebinning for fully 3-D PET. IEEE Trans Med Imaging 2007;26:347–58.PubMedCrossRef Cho S, Li Q, Ahn S, Bai B, Leahy RM. Iterative image reconstruction using inverse fourier rebinning for fully 3-D PET. IEEE Trans Med Imaging 2007;26:347–58.PubMedCrossRef
61.
go back to reference Kao CM. Windowed image reconstruction for time-of-flight positron emission tomography. Phys Med Biol 2008;53:3431–45.PubMedCrossRef Kao CM. Windowed image reconstruction for time-of-flight positron emission tomography. Phys Med Biol 2008;53:3431–45.PubMedCrossRef
62.
go back to reference Czernin J, Auerbach MA. Clinical PET/CT imaging: promises and misconceptions. Nuklearmedizin 2005;44(Suppl 1):S18–23.PubMed Czernin J, Auerbach MA. Clinical PET/CT imaging: promises and misconceptions. Nuklearmedizin 2005;44(Suppl 1):S18–23.PubMed
63.
go back to reference Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48(Suppl 1):78S–88S.PubMed Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48(Suppl 1):78S–88S.PubMed
64.
go back to reference Weber WA, Grosu AL, Czernin J. Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol 2008;5:160–70.PubMedCrossRef Weber WA, Grosu AL, Czernin J. Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol 2008;5:160–70.PubMedCrossRef
65.
go back to reference Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008;26:2155–61.PubMedCrossRef Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008;26:2155–61.PubMedCrossRef
66.
go back to reference Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48(Suppl 1):68S–77S.PubMed Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48(Suppl 1):68S–77S.PubMed
67.
go back to reference Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004;22:4357–68.PubMedCrossRef Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004;22:4357–68.PubMedCrossRef
68.
go back to reference Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMed Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMed
69.
go back to reference Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551–60.PubMedCrossRef Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551–60.PubMedCrossRef
70.
go back to reference Schwartz DL, Ford EC, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 2005;27:478–87.PubMedCrossRef Schwartz DL, Ford EC, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 2005;27:478–87.PubMedCrossRef
71.
go back to reference Gilman MD, Fischman AJ, Krishnasetty V, Halpern EF, Aquino SL. Hybrid PET/CT of the thorax: when is computer registration necessary? J Comput Assist Tomogr 2007;31:395–401.PubMedCrossRef Gilman MD, Fischman AJ, Krishnasetty V, Halpern EF, Aquino SL. Hybrid PET/CT of the thorax: when is computer registration necessary? J Comput Assist Tomogr 2007;31:395–401.PubMedCrossRef
72.
go back to reference Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57:125–34.PubMedCrossRef Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57:125–34.PubMedCrossRef
73.
go back to reference Messa C, Ceresoli GL, Rizzo G, Artioli D, Cattaneo M, Castellone P, et al. Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer. Q J Nucl Med Mol Imaging 2005;49:259–66.PubMed Messa C, Ceresoli GL, Rizzo G, Artioli D, Cattaneo M, Castellone P, et al. Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer. Q J Nucl Med Mol Imaging 2005;49:259–66.PubMed
74.
go back to reference Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2005;63:1432–41.PubMedCrossRef Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2005;63:1432–41.PubMedCrossRef
75.
go back to reference Cherry SR. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)—advances in PET imaging technology. J Nucl Med 2006;47:1735–45.PubMed Cherry SR. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)—advances in PET imaging technology. J Nucl Med 2006;47:1735–45.PubMed
76.
77.
go back to reference Wong W, Zhang Y, Liu S, Li H, Baghaei H, Ramirez RA, et al. Feasibility studies of an affordable high resolution 1 meter long PET. J Nucl Med 2008;49(Suppl 1):4110. Wong W, Zhang Y, Liu S, Li H, Baghaei H, Ramirez RA, et al. Feasibility studies of an affordable high resolution 1 meter long PET. J Nucl Med 2008;49(Suppl 1):4110.
78.
go back to reference Conti M, Bendriemj B, Casey M. Performance of a high sensitivity PET scanner based on LSO panel detectors. IEEE Trans Nucl Sci 2006;53:1136–42.CrossRef Conti M, Bendriemj B, Casey M. Performance of a high sensitivity PET scanner based on LSO panel detectors. IEEE Trans Nucl Sci 2006;53:1136–42.CrossRef
79.
go back to reference Watanabe M, Shimuzu K, Omura T. A high-throughput whole-body PET scanner using flat panel PS-PMTs. IEEE Trans Nucl Sci 2004;51:796–800.CrossRef Watanabe M, Shimuzu K, Omura T. A high-throughput whole-body PET scanner using flat panel PS-PMTs. IEEE Trans Nucl Sci 2004;51:796–800.CrossRef
80.
go back to reference Derenzo SE. Mathematical removal of positron range blurring in high-resolution tomography. IEEE Trans Nucl Sci 1986;33:565–9.CrossRef Derenzo SE. Mathematical removal of positron range blurring in high-resolution tomography. IEEE Trans Nucl Sci 1986;33:565–9.CrossRef
81.
go back to reference Moses WW, Derenzo SE, Melcher CL, Manente RA. A room temperature LSO/Pin photodiode PET detector module that measures depth of interaction. IEEE Trans Nucl Sci 1995;42:1085–9.CrossRef Moses WW, Derenzo SE, Melcher CL, Manente RA. A room temperature LSO/Pin photodiode PET detector module that measures depth of interaction. IEEE Trans Nucl Sci 1995;42:1085–9.CrossRef
82.
go back to reference Dahlbom M, MacDonald LR, Eriksson L, Paulus M, Andreaco M, Casey ME, et al. Performance of a YSO/LSO phoswitch detector for use in a PET/SPECT system. IEEE Trans Nucl Sci 1998;44:1114–9.CrossRef Dahlbom M, MacDonald LR, Eriksson L, Paulus M, Andreaco M, Casey ME, et al. Performance of a YSO/LSO phoswitch detector for use in a PET/SPECT system. IEEE Trans Nucl Sci 1998;44:1114–9.CrossRef
83.
go back to reference Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 2002;49:104–10.CrossRef Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 2002;49:104–10.CrossRef
84.
go back to reference Stocklin GL. Is there a future for clinical fluorine-18 radiopharmaceuticals (excluding FDG)? Eur J Nucl Med 1998;25:1612–6.PubMed Stocklin GL. Is there a future for clinical fluorine-18 radiopharmaceuticals (excluding FDG)? Eur J Nucl Med 1998;25:1612–6.PubMed
85.
go back to reference Varagnolo L, Stokkel MP, Mazzi U, Pauwels EK. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl Med Biol 2000;27:103–12.PubMedCrossRef Varagnolo L, Stokkel MP, Mazzi U, Pauwels EK. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl Med Biol 2000;27:103–12.PubMedCrossRef
86.
go back to reference Shiue CY, Welch MJ. Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin North Am 2004;42:1033–1053. viii.PubMedCrossRef Shiue CY, Welch MJ. Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin North Am 2004;42:1033–1053. viii.PubMedCrossRef
87.
go back to reference Couturier O, Luxen A, Chatal JF, Vuillez JP, Rigo P, Hustinx R. Fluorinated tracers for imaging cancer with positron emission tomography. Eur J Nucl Med Mol Imaging 2004;31:1182–206.PubMedCrossRef Couturier O, Luxen A, Chatal JF, Vuillez JP, Rigo P, Hustinx R. Fluorinated tracers for imaging cancer with positron emission tomography. Eur J Nucl Med Mol Imaging 2004;31:1182–206.PubMedCrossRef
88.
go back to reference Vallabhajosula S. 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 2007;37:400–19.PubMedCrossRef Vallabhajosula S. 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 2007;37:400–19.PubMedCrossRef
89.
go back to reference Groves AM, Win T, Haim SB, Ell PJ. Non-[18F]FDG PET in clinical oncology. Lancet Oncol 2007;8:822–30.PubMedCrossRef Groves AM, Win T, Haim SB, Ell PJ. Non-[18F]FDG PET in clinical oncology. Lancet Oncol 2007;8:822–30.PubMedCrossRef
90.
go back to reference Christensen N, Hammer B, Heil B, Fetterly K. Positron emission tomography within a magnetic field using phototubes and lightguides. Phys Med Biol 1995;40:691–7.PubMedCrossRef Christensen N, Hammer B, Heil B, Fetterly K. Positron emission tomography within a magnetic field using phototubes and lightguides. Phys Med Biol 1995;40:691–7.PubMedCrossRef
91.
go back to reference Buchanan M. A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet. IEEE Trans Nucl Sci 1996;43:2044–8.CrossRef Buchanan M. A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet. IEEE Trans Nucl Sci 1996;43:2044–8.CrossRef
92.
go back to reference Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 1997;44:1167–71.CrossRef Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 1997;44:1167–71.CrossRef
93.
go back to reference Slates R, Cherry S, Boutefnouchet A, Shao Y, Dahlborn M, Farahani K. Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 1999;46:565–70.CrossRef Slates R, Cherry S, Boutefnouchet A, Shao Y, Dahlborn M, Farahani K. Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 1999;46:565–70.CrossRef
94.
go back to reference Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47:1968–76.PubMed Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47:1968–76.PubMed
95.
go back to reference Judenhofer MS, Catana C, Swann BK, Siegel SB, Jung WI, Nutt RE, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 2007;244:807–14.PubMedCrossRef Judenhofer MS, Catana C, Swann BK, Siegel SB, Jung WI, Nutt RE, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 2007;244:807–14.PubMedCrossRef
96.
go back to reference Pichler BJ, Swann BK, Rochelle J, Nutt RE, Cherry SR, Siegel SB. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 2004;49:4305–19.PubMedCrossRef Pichler BJ, Swann BK, Rochelle J, Nutt RE, Cherry SR, Siegel SB. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 2004;49:4305–19.PubMedCrossRef
97.
go back to reference Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006;47:639–47.PubMed Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006;47:639–47.PubMed
98.
go back to reference Burbar Z, Graxioso R, Corbeil JL, et al. PET performance of PET/MR brain insert tomograph (abstract). Nuclear Science Symposium and Medical Imaging Conference Record, 2006. IEEE, p 116. Burbar Z, Graxioso R, Corbeil JL, et al. PET performance of PET/MR brain insert tomograph (abstract). Nuclear Science Symposium and Medical Imaging Conference Record, 2006. IEEE, p 116.
99.
go back to reference Schmand M, Burbar Z, Corbeil J, Zhang N, Michael C, Byars L, et al. BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 2007;48(Suppl 2):45P. Schmand M, Burbar Z, Corbeil J, Zhang N, Michael C, Byars L, et al. BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 2007;48(Suppl 2):45P.
100.
go back to reference Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous PET/MR imaging of the human brain: feasibility study. Radiology 2008;248:1028–35.PubMedCrossRef Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous PET/MR imaging of the human brain: feasibility study. Radiology 2008;248:1028–35.PubMedCrossRef
101.
go back to reference Kops RR, Qin P, Mueller-Veggian M, Herzog H. Attenuation correction of PET scanning based on MR images. Nuclear Science Symposium and Medical Imaging Conference Record, 2006, IEEE. Kops RR, Qin P, Mueller-Veggian M, Herzog H. Attenuation correction of PET scanning based on MR images. Nuclear Science Symposium and Medical Imaging Conference Record, 2006, IEEE.
102.
go back to reference Hofmann M, Steinke F, Scheel V, Charpiat G, Brady M, Schoelkopf B, et al. MR-based PET attenuation correction – method and validation (abstract). Nuclear Science Symposium and Medical Imaging Conference, 2007, IEEE, M16-6. Hofmann M, Steinke F, Scheel V, Charpiat G, Brady M, Schoelkopf B, et al. MR-based PET attenuation correction – method and validation (abstract). Nuclear Science Symposium and Medical Imaging Conference, 2007, IEEE, M16-6.
103.
go back to reference Zaidi H, Mawlawi O, Orton CG. Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 2007;34:1525–8.PubMedCrossRef Zaidi H, Mawlawi O, Orton CG. Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 2007;34:1525–8.PubMedCrossRef
Metadata
Title
Multimodality imaging: an update on PET/CT technology
Authors
Osama Mawlawi
David W. Townsend
Publication date
01-03-2009
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2009
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-1016-6

Other articles of this Special Issue 1/2009

European Journal of Nuclear Medicine and Molecular Imaging 1/2009 Go to the issue