Skip to main content
Top
Published in: Pediatric Radiology 6/2013

01-06-2013 | Original Article

Effect of vertical positioning on organ dose, image noise and contrast in pediatric chest CT—phantom study

Authors: Touko Kaasalainen, Kirsi Palmu, Anniina Lampinen, Mika Kortesniemi

Published in: Pediatric Radiology | Issue 6/2013

Login to get access

Abstract

Background

CT optimization has a special importance in children. Smaller body size accentuates the importance of patient positioning affecting both radiation dose and image quality.

Objective

To determine the effect of vertical positioning on organ dose, image noise and contrast in pediatric chest CT examination.

Materials and methods

Chest scans of a pediatric 5-year anthropomorphic phantom were performed in different vertical positions (−6 cm to +5.4 cm) with a 64-slice CT scanner. Organ doses were measured with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Image noise and contrast were determined from the CT number histograms corresponding to different tissues.

Results

Significant changes in organ doses resulting from vertical positioning were observed, especially in radiosensitive anterior organs. The breast dose increased up to 16% and the thyroid dose up to 24% in lower positions. The noise was increased up to 45% relative to the centre position in the highest and lowest vertical positions, with a particular increase observed on the anterior and posterior sides, respectively. Off-centering also affected measured image contrast.

Conclusion

Vertical off-centering markedly affects organ doses and measured image-quality parameters in pediatric chest CT examination. Special attention should be given to correct patient centering when preparing patients for CT scans, especially when imaging children.
Literature
1.
go back to reference Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRef Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRef
2.
go back to reference Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505PubMedCrossRef Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505PubMedCrossRef
3.
go back to reference Berrington de González A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomography scans performed in the United States in 2007. Arch Intern Med 169:2071–2077PubMedCrossRef Berrington de González A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomography scans performed in the United States in 2007. Arch Intern Med 169:2071–2077PubMedCrossRef
4.
go back to reference National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII – phase 2. National Academic Press, Washington DC, p 15 National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII – phase 2. National Academic Press, Washington DC, p 15
5.
go back to reference Børretzen I, Lysdahl KB, Olerud HM (2007) Diagnostic radiology in Norway – trends in examination frequency and collective effective dose. Radiat Prot Dosim 124:339–347CrossRef Børretzen I, Lysdahl KB, Olerud HM (2007) Diagnostic radiology in Norway – trends in examination frequency and collective effective dose. Radiat Prot Dosim 124:339–347CrossRef
6.
go back to reference Mettler FA Jr, Huda W, Yoshizumi TT et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263PubMedCrossRef Mettler FA Jr, Huda W, Yoshizumi TT et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263PubMedCrossRef
7.
go back to reference Hart D, Wall BF (2004) UK population dose from medical X-ray examinations. Eur Radiol 50:285–291CrossRef Hart D, Wall BF (2004) UK population dose from medical X-ray examinations. Eur Radiol 50:285–291CrossRef
8.
go back to reference Bly R, Järvinen H, Korpela MH et al (2011) Estimated collective effective dose to the population from X-ray and nuclear medicine examinations in Finland. Radiat Prot Dosim 147:233–236CrossRef Bly R, Järvinen H, Korpela MH et al (2011) Estimated collective effective dose to the population from X-ray and nuclear medicine examinations in Finland. Radiat Prot Dosim 147:233–236CrossRef
9.
go back to reference Aroua A, Vader JP, Valley JF et al (2007) Exposure of the Swiss population by radiodiagnostics: 2003 review. Health Phys 92:442–448PubMedCrossRef Aroua A, Vader JP, Valley JF et al (2007) Exposure of the Swiss population by radiodiagnostics: 2003 review. Health Phys 92:442–448PubMedCrossRef
11.
go back to reference Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344PubMedCrossRef Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344PubMedCrossRef
12.
go back to reference Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628PubMedCrossRef Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628PubMedCrossRef
13.
go back to reference Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimisation of CT. Phys Med 24:71–79PubMedCrossRef Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimisation of CT. Phys Med 24:71–79PubMedCrossRef
14.
go back to reference Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. Am J Roentgenol 188:540–546CrossRef Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. Am J Roentgenol 188:540–546CrossRef
15.
go back to reference Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166PubMedCrossRef Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166PubMedCrossRef
16.
go back to reference Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657PubMedCrossRef Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657PubMedCrossRef
17.
go back to reference Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147PubMedCrossRef Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147PubMedCrossRef
18.
go back to reference Wang J, Duan X, Christner JA et al (2011) Radiation dose reduction to the breast in thoracic CT: comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med Phys 38:6084–6092PubMedCrossRef Wang J, Duan X, Christner JA et al (2011) Radiation dose reduction to the breast in thoracic CT: comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med Phys 38:6084–6092PubMedCrossRef
19.
go back to reference Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907PubMedCrossRef Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907PubMedCrossRef
20.
go back to reference Sigal-Cinqualbre AB, Hennequin R, Abada HT et al (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174PubMedCrossRef Sigal-Cinqualbre AB, Hennequin R, Abada HT et al (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174PubMedCrossRef
21.
go back to reference Matsuoka S, Hunsaker AR, Gill RR et al (2009) Vascular enhancement and image quality of MDCT pulmonary angiography in 400 cases: comparison of standard and low kilovoltage settings. AJR Am J Roentgenol 192:1651–1656PubMedCrossRef Matsuoka S, Hunsaker AR, Gill RR et al (2009) Vascular enhancement and image quality of MDCT pulmonary angiography in 400 cases: comparison of standard and low kilovoltage settings. AJR Am J Roentgenol 192:1651–1656PubMedCrossRef
22.
go back to reference Udayasankar UK, Li J, Baumgarten DA et al (2009) Acute abdominal pain: value of non-contrast enhanced ultra-low-dose multi-detector row CT as a substitute for abdominal radiographs. Emerg Radiol 16:61–70PubMedCrossRef Udayasankar UK, Li J, Baumgarten DA et al (2009) Acute abdominal pain: value of non-contrast enhanced ultra-low-dose multi-detector row CT as a substitute for abdominal radiographs. Emerg Radiol 16:61–70PubMedCrossRef
23.
go back to reference Lee SJ, Park SH, Kim AY et al (2011) A prospective comparison of standard-dose CT enterography and 50% reduced-dose CT enterography with and without noise reduction for evaluation Crohn disease. Am J Roentgenol 197:50–57CrossRef Lee SJ, Park SH, Kim AY et al (2011) A prospective comparison of standard-dose CT enterography and 50% reduced-dose CT enterography with and without noise reduction for evaluation Crohn disease. Am J Roentgenol 197:50–57CrossRef
24.
go back to reference Gervaise A, Osemont B, Lecocq S et al (2012) CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22:295–301PubMedCrossRef Gervaise A, Osemont B, Lecocq S et al (2012) CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22:295–301PubMedCrossRef
25.
go back to reference Winklehner A, Karlo C, Puippe G et al (2011) Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 21:2521–2526PubMedCrossRef Winklehner A, Karlo C, Puippe G et al (2011) Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 21:2521–2526PubMedCrossRef
26.
go back to reference Moscariello A, Takx RAP, Schoepf UJ et al (2011) Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative reconstruction technique-comparison with traditional filtered back projection. Eur Radiol 21:2130–2138PubMedCrossRef Moscariello A, Takx RAP, Schoepf UJ et al (2011) Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative reconstruction technique-comparison with traditional filtered back projection. Eur Radiol 21:2130–2138PubMedCrossRef
27.
go back to reference Toth T, Ge Z, Daly MP (2007) The influence of patient centering on CT dose and image noise. Med Phys 34:3093–3101PubMedCrossRef Toth T, Ge Z, Daly MP (2007) The influence of patient centering on CT dose and image noise. Med Phys 34:3093–3101PubMedCrossRef
28.
29.
go back to reference Gudjonsdottir J, Svensson JR, Campling S et al (2009) Efficient use of automatic exposure control systems in computed tomography requires correct patient positioning. Acta Radiol 50:1035–1041PubMedCrossRef Gudjonsdottir J, Svensson JR, Campling S et al (2009) Efficient use of automatic exposure control systems in computed tomography requires correct patient positioning. Acta Radiol 50:1035–1041PubMedCrossRef
30.
go back to reference Habibzadeh MA, Ay MR, Asl AR et al (2012) Impact of miscentering on patient dose and image noise in x-ray CT imaging: phantom and clinical studies. Phys Med 28:191–199PubMedCrossRef Habibzadeh MA, Ay MR, Asl AR et al (2012) Impact of miscentering on patient dose and image noise in x-ray CT imaging: phantom and clinical studies. Phys Med 28:191–199PubMedCrossRef
31.
go back to reference Li J, Udayasankar UK, Toth TL et al (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188:547–552PubMedCrossRef Li J, Udayasankar UK, Toth TL et al (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188:547–552PubMedCrossRef
32.
go back to reference Matsubara K, Koshida K, Ichikawa K et al (2009) Misoperation of CT automatic tube current modulation systems with inappropriate patient centering: phantom studies. AJR Am J Roentgenol 192:862–865PubMedCrossRef Matsubara K, Koshida K, Ichikawa K et al (2009) Misoperation of CT automatic tube current modulation systems with inappropriate patient centering: phantom studies. AJR Am J Roentgenol 192:862–865PubMedCrossRef
33.
go back to reference ICRP (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37:2–4 ICRP (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37:2–4
34.
go back to reference Boland GWL, Lee MJ, Gazelle SG et al (1998) Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol 171:201–204PubMedCrossRef Boland GWL, Lee MJ, Gazelle SG et al (1998) Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol 171:201–204PubMedCrossRef
Metadata
Title
Effect of vertical positioning on organ dose, image noise and contrast in pediatric chest CT—phantom study
Authors
Touko Kaasalainen
Kirsi Palmu
Anniina Lampinen
Mika Kortesniemi
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
Pediatric Radiology / Issue 6/2013
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-012-2611-z

Other articles of this Issue 6/2013

Pediatric Radiology 6/2013 Go to the issue