Skip to main content
Top
Published in: Calcified Tissue International 4/2010

01-04-2010

Strontium and Bone Nanostructure in Normal and Ovariectomized Rats Investigated by Scanning Small-Angle X-Ray Scattering

Authors: Mathias H. Bünger, Hans Oxlund, Toke K. Hansen, Søren Sørensen, Bo M. Bibby, Jesper S. Thomsen, Bente L. Langdahl, Flemming Besenbacher, Jan S. Pedersen, Henrik Birkedal

Published in: Calcified Tissue International | Issue 4/2010

Login to get access

Abstract

The effect of SrCl2 treatment on bone nanostructure in a rat ovariectomy model was studied using scanning small-angle X-ray scattering (sSAXS). Twelve 6-month-old female Wistar rats were used. Six animals were ovariectomized (+ovx) and six were left intact after sham surgery (−ovx). Six animals, three +ovx and three −ovx, were treated with 4 mmol SrCl2 (aq)/kg/day (+Sr), whereas the remaining six received placebo (−Sr) for 140 days. Rats were labeled with flourochromes at days 7, 126, and 136. Femoral cross sections were studied using fluorescence microscopy, scanning electron microscopy including energy-dispersive X-ray analysis, and sSAXS. The SAXS data comprised about 5,500 measurements and provided information about mineral crystal thickness and orientation in new and old bone. The newly formed bone contained higher levels of Sr2+ in +Sr than in −Sr animals, indicating that the Sr2+ was incorporated into the new bone. Mineral plates were significantly thicker in old bone, 2.62 nm (95% CI 2.58–2.66), than in new bone, 2.41 nm (95% CI 2.36–2.46). Surprisingly, mineral plates in new bone were significantly thicker (2.52 [95% CI 2.47–2.57] nm vs. 2.41 [95% CI 2.36–2.46] nm, P = 0.017) in +ovx rats than in −ovx rats. However, no significant effect of SrCl2 on mineral plate thicknesses in new bone was observed. The statistical model yielded estimates of the difference in bone mineral plate thickness induced by Sr. The estimated effect of Sr was −0.09 (95% CI −0.21 to 0.03) and 0.02 (95% CI −0.10 to 0.14) nm for new bone in −ovx and +ovx rats, respectively.
Literature
2.
go back to reference Delannoy P, Bazot D, Marie PJ (2002) Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism 51:906–911CrossRefPubMed Delannoy P, Bazot D, Marie PJ (2002) Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism 51:906–911CrossRefPubMed
3.
go back to reference Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615CrossRefPubMed Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615CrossRefPubMed
4.
go back to reference Marie PJ, Garba MT, Hott M, Miravet L (1985) Effect of low doses of stable strontium on bone metabolism in rats. Miner Electrolyte Metab 11:5–13PubMed Marie PJ, Garba MT, Hott M, Miravet L (1985) Effect of low doses of stable strontium on bone metabolism in rats. Miner Electrolyte Metab 11:5–13PubMed
5.
go back to reference Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A (2001) Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 29:176–179CrossRefPubMed Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A (2001) Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 29:176–179CrossRefPubMed
6.
go back to reference Grynpas MD, Marie PJ (1990) Effects of low doses of strontium on bone quality and quantity in rats. Bone 11:313–319CrossRefPubMed Grynpas MD, Marie PJ (1990) Effects of low doses of strontium on bone quality and quantity in rats. Bone 11:313–319CrossRefPubMed
7.
go back to reference Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468CrossRefPubMed Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468CrossRefPubMed
8.
go back to reference Reginster JY, Deroisy R, Dougados M, Jupsin I, Colette J, Roux C (2002) Prevention of early postmenopausal bone loss by strontium ranelate: the randomized, two-year, double-masked, dose-ranging, placebo-controlled PREVOS trial. Osteoporos Int 13:925–931CrossRefPubMed Reginster JY, Deroisy R, Dougados M, Jupsin I, Colette J, Roux C (2002) Prevention of early postmenopausal bone loss by strontium ranelate: the randomized, two-year, double-masked, dose-ranging, placebo-controlled PREVOS trial. Osteoporos Int 13:925–931CrossRefPubMed
9.
go back to reference Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822CrossRefPubMed Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822CrossRefPubMed
10.
go back to reference Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRefPubMed Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRefPubMed
11.
12.
go back to reference Cabrera WE, Schrooten I, De Broe ME, D’Haese PC (1999) Strontium and bone. J Bone Miner Res 14:661–668CrossRefPubMed Cabrera WE, Schrooten I, De Broe ME, D’Haese PC (1999) Strontium and bone. J Bone Miner Res 14:661–668CrossRefPubMed
13.
go back to reference Neufeld EB, Boskey AL (1994) Strontium alters the complexed acidic phospholipid content of mineralizing tissues. Bone 15:425–430CrossRefPubMed Neufeld EB, Boskey AL (1994) Strontium alters the complexed acidic phospholipid content of mineralizing tissues. Bone 15:425–430CrossRefPubMed
14.
go back to reference Jethi RK, Wadkins CL, Mackey MG, Meredith PD (1972) Studies of mechanism of biological calcification. 3. Interaction of strontium with a calcifiable matrix from beef tendon. Calcif Tissue Res 9:310–324CrossRefPubMed Jethi RK, Wadkins CL, Mackey MG, Meredith PD (1972) Studies of mechanism of biological calcification. 3. Interaction of strontium with a calcifiable matrix from beef tendon. Calcif Tissue Res 9:310–324CrossRefPubMed
15.
go back to reference Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14(Suppl 3):S19–S24PubMed Boivin G, Meunier PJ (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14(Suppl 3):S19–S24PubMed
16.
go back to reference Mann S (2002) Biomineralization, Principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford Mann S (2002) Biomineralization, Principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford
17.
go back to reference Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6:879–885PubMed Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6:879–885PubMed
18.
go back to reference Landis WJ (1999) An overview of vertebrate mineralization with emphasis on collagen-mineral interaction. Gravit Space Biol Bull 12:15–26PubMed Landis WJ (1999) An overview of vertebrate mineralization with emphasis on collagen-mineral interaction. Gravit Space Biol Bull 12:15–26PubMed
19.
go back to reference Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020CrossRefPubMed Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020CrossRefPubMed
20.
go back to reference Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O (1997) Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 20:47–54CrossRefPubMed Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O (1997) Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 20:47–54CrossRefPubMed
21.
go back to reference Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578CrossRefPubMed Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ (2005) Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res 20:1569–1578CrossRefPubMed
22.
go back to reference Skoryna SC (1981) Effects of oral supplementation with stable strontium. Can Med Assoc J 125:703–712PubMed Skoryna SC (1981) Effects of oral supplementation with stable strontium. Can Med Assoc J 125:703–712PubMed
23.
go back to reference Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453CrossRefPubMed Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453CrossRefPubMed
24.
go back to reference Grynpas MD, Hamilton E, Cheung R, Tsouderos Y, Deloffre P, Hott M, Marie PJ (1996) Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone 18:253–259CrossRefPubMed Grynpas MD, Hamilton E, Cheung R, Tsouderos Y, Deloffre P, Hott M, Marie PJ (1996) Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone 18:253–259CrossRefPubMed
25.
go back to reference Fratzl P, Groschner M, Vogl G, Plenk H Jr, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334CrossRefPubMed Fratzl P, Groschner M, Vogl G, Plenk H Jr, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334CrossRefPubMed
26.
go back to reference Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34:247–254CrossRefPubMed Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34:247–254CrossRefPubMed
27.
go back to reference Hauge Bunger M, Foss M, Erlacher K, Bruun Hovgaard M, Chevallier J, Langdahl B, Bunger C, Birkedal H, Besenbacher F, Skov Pedersen J (2006) Nanostructure of the neurocentral growth plate: insight from scanning small angle X-ray scattering, atomic force microscopy and scanning electron microscopy. Bone 39:530–541CrossRefPubMed Hauge Bunger M, Foss M, Erlacher K, Bruun Hovgaard M, Chevallier J, Langdahl B, Bunger C, Birkedal H, Besenbacher F, Skov Pedersen J (2006) Nanostructure of the neurocentral growth plate: insight from scanning small angle X-ray scattering, atomic force microscopy and scanning electron microscopy. Bone 39:530–541CrossRefPubMed
28.
go back to reference Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64:422–429CrossRefPubMed Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64:422–429CrossRefPubMed
29.
go back to reference Oxlund HTJ, Andreassen TT (2005) Low-dose strontium increased the formation of new lamellar bone at the periosteal surface, with normal mechanical competence. J Bone Miner Res 20(Suppl 1):S414 Oxlund HTJ, Andreassen TT (2005) Low-dose strontium increased the formation of new lamellar bone at the periosteal surface, with normal mechanical competence. J Bone Miner Res 20(Suppl 1):S414
30.
go back to reference Pedersen JS (2004) A flux- and background-optimized version of the NanoSTAR small-angle X-ray scattering camera for solution scattering. J Appl Crystallogr 37:369–380CrossRef Pedersen JS (2004) A flux- and background-optimized version of the NanoSTAR small-angle X-ray scattering camera for solution scattering. J Appl Crystallogr 37:369–380CrossRef
31.
go back to reference Fratzl P (1994) Statistical model of the habit and arrangement of mineral crystals in the collagen of bone. J Stat Phys 77:125–143CrossRef Fratzl P (1994) Statistical model of the habit and arrangement of mineral crystals in the collagen of bone. J Stat Phys 77:125–143CrossRef
32.
go back to reference Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413CrossRefPubMed Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413CrossRefPubMed
33.
go back to reference Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle X-ray-scattering study. J Bone Miner Res 9:1541–1549CrossRefPubMed Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle X-ray-scattering study. J Bone Miner Res 9:1541–1549CrossRefPubMed
34.
go back to reference Fratzl P, Schreiber S, Boyde A (1996) Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Calcif Tissue Int 58:341–346CrossRefPubMed Fratzl P, Schreiber S, Boyde A (1996) Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Calcif Tissue Int 58:341–346CrossRefPubMed
35.
go back to reference Fratzl P, Schreiber S, Roschger P, Lafage MH, Rodan G, Klaushofer K (1996) Effects of sodium fluoride and alendronate on the bone mineral in minipigs: a small-angle X-ray scattering and backscattered electron imaging study. J Bone Miner Res 11:248–253CrossRefPubMed Fratzl P, Schreiber S, Roschger P, Lafage MH, Rodan G, Klaushofer K (1996) Effects of sodium fluoride and alendronate on the bone mineral in minipigs: a small-angle X-ray scattering and backscattered electron imaging study. J Bone Miner Res 11:248–253CrossRefPubMed
36.
go back to reference Bunger MH, Foss M, Erlacher K, Li H, Zou X, Langdahl BL, Bunger C, Birkedal H, Besenbacher F, Pedersen JS (2006) Bone nanostructure near titanium and porous tantalum implants studied by scanning small angle X-ray scattering. Eur Cell Mater 12:81–91PubMed Bunger MH, Foss M, Erlacher K, Li H, Zou X, Langdahl BL, Bunger C, Birkedal H, Besenbacher F, Pedersen JS (2006) Bone nanostructure near titanium and porous tantalum implants studied by scanning small angle X-ray scattering. Eur Cell Mater 12:81–91PubMed
37.
go back to reference Lindner P, Zemb T (2002) Neutrons, X-rays and light: scattering methods applied to soft condensed matter. Elsevier Science, Amsterdam Lindner P, Zemb T (2002) Neutrons, X-rays and light: scattering methods applied to soft condensed matter. Elsevier Science, Amsterdam
38.
go back to reference Shimada T, Doi M, Okano K (1988) Concentration fluctuation in stiff polymers. I. Static structure factor. J Chem Phys 88:2815–2821CrossRef Shimada T, Doi M, Okano K (1988) Concentration fluctuation in stiff polymers. I. Static structure factor. J Chem Phys 88:2815–2821CrossRef
39.
go back to reference Siperko LM, Landis WJ (2001) Aspects of mineral structure in normally calcifying avian tendon. J Struct Biol 135:313–320CrossRefPubMed Siperko LM, Landis WJ (2001) Aspects of mineral structure in normally calcifying avian tendon. J Struct Biol 135:313–320CrossRefPubMed
40.
go back to reference Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure–function relations. J Struct Biol 126:241–255CrossRefPubMed Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure–function relations. J Struct Biol 126:241–255CrossRefPubMed
41.
go back to reference Camacho NP, Rinnerthaler S, Paschalis EP, Mendelsohn R, Boskey AL, Fratzl P (1999) Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy. Bone 25:287–293CrossRefPubMed Camacho NP, Rinnerthaler S, Paschalis EP, Mendelsohn R, Boskey AL, Fratzl P (1999) Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy. Bone 25:287–293CrossRefPubMed
42.
go back to reference Roschger P, Grabner BM, Rinnerthaler S, Tesch W, Kneissel M, Berzlanovich A, Klaushofer K, Fratzl P (2001) Structural development of the mineralized tissue in the human L4 vertebral body. J Struct Biol 136:126–136CrossRefPubMed Roschger P, Grabner BM, Rinnerthaler S, Tesch W, Kneissel M, Berzlanovich A, Klaushofer K, Fratzl P (2001) Structural development of the mineralized tissue in the human L4 vertebral body. J Struct Biol 136:126–136CrossRefPubMed
43.
go back to reference Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 52:26–33CrossRefPubMed Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 52:26–33CrossRefPubMed
44.
go back to reference Kim BT, Mosekilde L, Duan Y, Zhang XZ, Tornvig L, Thomsen JS, Seeman E (2003) The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 18:150–155CrossRefPubMed Kim BT, Mosekilde L, Duan Y, Zhang XZ, Tornvig L, Thomsen JS, Seeman E (2003) The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 18:150–155CrossRefPubMed
45.
go back to reference Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA guidelines and animal models for osteoporosis. Bone 17(Suppl 4):125S–133SPubMed Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA guidelines and animal models for osteoporosis. Bone 17(Suppl 4):125S–133SPubMed
46.
go back to reference Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2:115–122CrossRefPubMed Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2:115–122CrossRefPubMed
47.
go back to reference Ammann P (2005) Strontium ranelate: a novel mode of action leading to renewed bone. Osteoporos Int 16(Suppl 1):S11–S15CrossRefPubMed Ammann P (2005) Strontium ranelate: a novel mode of action leading to renewed bone. Osteoporos Int 16(Suppl 1):S11–S15CrossRefPubMed
48.
go back to reference Ammann P (2006) Strontium ranelate: a physiological approach for an improved bone quality. Bone 38(Suppl 1):15–18CrossRefPubMed Ammann P (2006) Strontium ranelate: a physiological approach for an improved bone quality. Bone 38(Suppl 1):15–18CrossRefPubMed
49.
go back to reference Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425CrossRefPubMed Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425CrossRefPubMed
50.
go back to reference Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GA, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:612–616CrossRefPubMed Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GA, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:612–616CrossRefPubMed
Metadata
Title
Strontium and Bone Nanostructure in Normal and Ovariectomized Rats Investigated by Scanning Small-Angle X-Ray Scattering
Authors
Mathias H. Bünger
Hans Oxlund
Toke K. Hansen
Søren Sørensen
Bo M. Bibby
Jesper S. Thomsen
Bente L. Langdahl
Flemming Besenbacher
Jan S. Pedersen
Henrik Birkedal
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 4/2010
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-010-9341-8

Other articles of this Issue 4/2010

Calcified Tissue International 4/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.