Skip to main content
Top
Published in: Calcified Tissue International 2/2009

01-02-2009

The Schneiderian Membrane Contains Osteoprogenitor Cells: In Vivo and In Vitro Study

Authors: S. Srouji, T. Kizhner, D. Ben David, M. Riminucci, P. Bianco, E. Livne

Published in: Calcified Tissue International | Issue 2/2009

Login to get access

Abstract

Recent studies successfully demonstrated induction of new bone formation in the maxillary sinus by mucosal membrane lifting without the use of any graft material. The aim of this work was to test the osteogenic potential of human maxillary sinus Schneiderian membrane (hMSSM) using both in vitro and in vivo assays. Samples of hMSSM were used for establishment of cell cultures and for histological studies. Flow cytometry analysis was performed on P0, P1, and P2 cultures using established mesenchymal progenitor cell markers (CD 105, CD 146, CD 71, CD 73, CD 166), and the ability of hMSSM cells to undergo osteogenic differentiation in culture was analyzed using relevant in vitro assays. Results showed that hMSSM cells could be induced to express alkaline phosphatase, bone morphogenic protein-2, osteopontin, osteonectin, and osteocalcin and to mineralize their extracellular matrix. Inherent osteogenic potential of hMSSM-derived cells was further proven by in vivo experiments, which demonstrated the formation of histology-proven bone at ectopic sites following transplantation of hMSSM-derived cells in conjunction with an osteoconductive scaffold. This study provides the biological background for understanding the observed clinical phenomena in sinus lifting. Our results show that a genuine osteogenic potential is associated with the hMSSM and can contribute to development of successful sinus augmentation techniques.
Literature
1.
go back to reference Artzi Z, Nemcovsky CE, Tal H, Dayan D (2001) Histopathological morphometric evaluation of 2 different hydroxyapatite-bone derivatives in sinus augmentation procedures: a comparative study in humans. J Periodontol 72:911–920PubMedCrossRef Artzi Z, Nemcovsky CE, Tal H, Dayan D (2001) Histopathological morphometric evaluation of 2 different hydroxyapatite-bone derivatives in sinus augmentation procedures: a comparative study in humans. J Periodontol 72:911–920PubMedCrossRef
2.
go back to reference Asai S, Shimizu Y, Ooya K (2002) Maxillary sinus augmentation model in rabbits: effect of occluded nasal ostium on new bone formation. Clin Oral Implants Res 13:405–409PubMedCrossRef Asai S, Shimizu Y, Ooya K (2002) Maxillary sinus augmentation model in rabbits: effect of occluded nasal ostium on new bone formation. Clin Oral Implants Res 13:405–409PubMedCrossRef
3.
go back to reference Bianco P, Kuznetsov SA, Riminucci M, Robey PG (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148PubMedCrossRef Bianco P, Kuznetsov SA, Riminucci M, Robey PG (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148PubMedCrossRef
4.
go back to reference Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192PubMedCrossRef Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192PubMedCrossRef
6.
go back to reference Bianco P, Robey PG (2004) Skeletal stem cells. In: Lanza RP (ed) Handbook of adult and fetal stem cells. Academic Press, San Diego, CA, pp 415–424CrossRef Bianco P, Robey PG (2004) Skeletal stem cells. In: Lanza RP (ed) Handbook of adult and fetal stem cells. Academic Press, San Diego, CA, pp 415–424CrossRef
7.
go back to reference Boyne PJ, James RA (1980) Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg 38:613–616PubMed Boyne PJ, James RA (1980) Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg 38:613–616PubMed
8.
go back to reference Boyne PJ, Lilly LC, Marx RE, Moy PK, Nevins M, Spagnoli DB, Triplett RG (2005) De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. J Oral Maxillofac Surg 36:1693–1707CrossRef Boyne PJ, Lilly LC, Marx RE, Moy PK, Nevins M, Spagnoli DB, Triplett RG (2005) De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. J Oral Maxillofac Surg 36:1693–1707CrossRef
9.
go back to reference Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294PubMedCrossRef Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294PubMedCrossRef
10.
go back to reference Cammack GV 2nd, Nevins M, Clem DS 3rd, Hatch JP, Mellonig JT (2005) Histologic evaluation of mineralized and demineralized freeze-dried bone allograft for ridge and sinus augmentations. Int J Periodont Restor Dent 25:231–237 Cammack GV 2nd, Nevins M, Clem DS 3rd, Hatch JP, Mellonig JT (2005) Histologic evaluation of mineralized and demineralized freeze-dried bone allograft for ridge and sinus augmentations. Int J Periodont Restor Dent 25:231–237
11.
go back to reference Cawood JI, Howell RA (1991) Reconstructive preprosthetic surgery. I. Anatomical considerations. Int J Oral Maxillofac Surg 20:75–82PubMedCrossRef Cawood JI, Howell RA (1991) Reconstructive preprosthetic surgery. I. Anatomical considerations. Int J Oral Maxillofac Surg 20:75–82PubMedCrossRef
12.
go back to reference Cicconetti A, Sacchetti B, Bartoli A, Michienzi S, Corsi A, Funari A, Robey PG, Bianco P, Riminucci M (2007) Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:618PubMedCrossRef Cicconetti A, Sacchetti B, Bartoli A, Michienzi S, Corsi A, Funari A, Robey PG, Bianco P, Riminucci M (2007) Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:618PubMedCrossRef
13.
go back to reference Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838PubMedCrossRef Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838PubMedCrossRef
14.
go back to reference Ellegaard B, Baelum V, Kolsen-Petersen J (2006) Non-grafted sinus implants in periodontally compromised patients: a time-to-event analysis. Clin Oral Implants Res 17:156–164PubMedCrossRef Ellegaard B, Baelum V, Kolsen-Petersen J (2006) Non-grafted sinus implants in periodontally compromised patients: a time-to-event analysis. Clin Oral Implants Res 17:156–164PubMedCrossRef
15.
go back to reference Ellegaard B, Kolsen-Petersen J, Baelum V (1997) Implant therapy involving maxillary sinus lift in periodontally compromised patients. Clin Oral Implants Res 8:305–315PubMedCrossRef Ellegaard B, Kolsen-Petersen J, Baelum V (1997) Implant therapy involving maxillary sinus lift in periodontally compromised patients. Clin Oral Implants Res 8:305–315PubMedCrossRef
16.
go back to reference Froum SJ, Wallace SS, Elian N, Cho SC, Tarnow DP (2006) Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. Int J Periodont Restor Dent 26:543–551 Froum SJ, Wallace SS, Elian N, Cho SC, Tarnow DP (2006) Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. Int J Periodont Restor Dent 26:543–551
17.
go back to reference Goshima J, Goldberg VM, Caplan AI (1991) Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258PubMedCrossRef Goshima J, Goldberg VM, Caplan AI (1991) Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258PubMedCrossRef
18.
go back to reference Gruber R, Kandler B, Fuerst G, Fischer MB, Watzek G (2004) Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro. Clin Oral Implants Res 15:575–580PubMedCrossRef Gruber R, Kandler B, Fuerst G, Fischer MB, Watzek G (2004) Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro. Clin Oral Implants Res 15:575–580PubMedCrossRef
19.
go back to reference Haas R, Baron M, Donath K, Zechner W, Watzek G (2002) Porous hydroxyapatite for grafting the maxillary sinus: a comparative histomorphometric study in sheep. Int J Oral Maxillofac Implants 17:337–346PubMed Haas R, Baron M, Donath K, Zechner W, Watzek G (2002) Porous hydroxyapatite for grafting the maxillary sinus: a comparative histomorphometric study in sheep. Int J Oral Maxillofac Implants 17:337–346PubMed
20.
go back to reference Hallman M, Cederlund A, Lindskog S, Lundgren S, Sennerby L (2001) A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Results after 6 to 8 months of healing. Clin Oral Implants Res 12:135–143PubMedCrossRef Hallman M, Cederlund A, Lindskog S, Lundgren S, Sennerby L (2001) A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Results after 6 to 8 months of healing. Clin Oral Implants Res 12:135–143PubMedCrossRef
21.
go back to reference Hallman M, Sennerby L, Zetterqvist L, Lundgren S (2005) A 3-year prospective follow-up study of implant-supported fixed prostheses in patients subjected to maxillary sinus floor augmentation with a 80:20 mixture of deproteinized bovine bone and autogenous bone. Clinical, radiographic and resonance frequency analysis. Int J Oral Maxillofac Surg 34:273–280PubMedCrossRef Hallman M, Sennerby L, Zetterqvist L, Lundgren S (2005) A 3-year prospective follow-up study of implant-supported fixed prostheses in patients subjected to maxillary sinus floor augmentation with a 80:20 mixture of deproteinized bovine bone and autogenous bone. Clinical, radiographic and resonance frequency analysis. Int J Oral Maxillofac Surg 34:273–280PubMedCrossRef
22.
go back to reference Hatano N, Shimizu Y, Ooya K (2004) A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2:1 autogenous bone/xenograft mixture and simultaneous placement of dental implants. Clin Oral Implants Res 15:339–345PubMedCrossRef Hatano N, Shimizu Y, Ooya K (2004) A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2:1 autogenous bone/xenograft mixture and simultaneous placement of dental implants. Clin Oral Implants Res 15:339–345PubMedCrossRef
23.
go back to reference Hurzeler MB, Quinones CR, Kirsch A, Gloker C, Schupbach P, Strub JR, Caffesse RG (1997) Maxillary sinus augmentation using different grafting materials and dental implants in monkeys. Part I. Evaluation of anorganic bovine-derived bone matrix. Clin Oral Implants Res 8:476–486PubMedCrossRef Hurzeler MB, Quinones CR, Kirsch A, Gloker C, Schupbach P, Strub JR, Caffesse RG (1997) Maxillary sinus augmentation using different grafting materials and dental implants in monkeys. Part I. Evaluation of anorganic bovine-derived bone matrix. Clin Oral Implants Res 8:476–486PubMedCrossRef
24.
go back to reference Jung YS, Chung SW, Nam W, Cho IH, Cha IH, Park HS (2007) Spontaneous bone formation on the maxillary sinus floor in association with an extraction socket. Int J Oral Maxillofac Surg 36:656–657PubMedCrossRef Jung YS, Chung SW, Nam W, Cho IH, Cha IH, Park HS (2007) Spontaneous bone formation on the maxillary sinus floor in association with an extraction socket. Int J Oral Maxillofac Surg 36:656–657PubMedCrossRef
25.
go back to reference Krebsbach PH, Kuznetsov SA, Satomura K, Emmons RV, Rowe DW, Robey PG (1997) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63:1059–1069PubMedCrossRef Krebsbach PH, Kuznetsov SA, Satomura K, Emmons RV, Rowe DW, Robey PG (1997) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63:1059–1069PubMedCrossRef
26.
go back to reference Lundgren S, Andersson S, Gualini F, Sennerby L (2004) Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation. Clin Implant Dent Relat Res 6:165–173PubMed Lundgren S, Andersson S, Gualini F, Sennerby L (2004) Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation. Clin Implant Dent Relat Res 6:165–173PubMed
27.
go back to reference Lundgren S, Andersson S, Sennerby L (2003) Spontaneous bone formation in the maxillary sinus after removal of a cyst: Coincidence or consequence? Clin Implant Dent Relat Res 5:78–81PubMedCrossRef Lundgren S, Andersson S, Sennerby L (2003) Spontaneous bone formation in the maxillary sinus after removal of a cyst: Coincidence or consequence? Clin Implant Dent Relat Res 5:78–81PubMedCrossRef
28.
go back to reference Muraglia A, Martin I, Cancedda R, Quarto R (1998) A nude mouse model for human bone formation in unloaded conditions. Bone 22:131S–134SPubMedCrossRef Muraglia A, Martin I, Cancedda R, Quarto R (1998) A nude mouse model for human bone formation in unloaded conditions. Bone 22:131S–134SPubMedCrossRef
29.
go back to reference Palma VC, Magro-Filho O, de Oliveria JA, Lundgren S, Salata LA, Sennerby L (2006) Bone reformation and implant integration following maxillary sinus membrane elevation: an experimental study in primates. Clin Implant Dent Relat Res 8:11–24PubMed Palma VC, Magro-Filho O, de Oliveria JA, Lundgren S, Salata LA, Sennerby L (2006) Bone reformation and implant integration following maxillary sinus membrane elevation: an experimental study in primates. Clin Implant Dent Relat Res 8:11–24PubMed
30.
go back to reference Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336PubMedCrossRef Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336PubMedCrossRef
31.
go back to reference Tatum H Jr (1986) Maxillary and sinus implant reconstructions. Dent Clin North Am 30:207–229PubMed Tatum H Jr (1986) Maxillary and sinus implant reconstructions. Dent Clin North Am 30:207–229PubMed
32.
go back to reference Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCrossRef Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCrossRef
Metadata
Title
The Schneiderian Membrane Contains Osteoprogenitor Cells: In Vivo and In Vitro Study
Authors
S. Srouji
T. Kizhner
D. Ben David
M. Riminucci
P. Bianco
E. Livne
Publication date
01-02-2009
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 2/2009
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-008-9202-x

Other articles of this Issue 2/2009

Calcified Tissue International 2/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.