Skip to main content
Top
Published in: Calcified Tissue International 4/2006

01-04-2006

Genetic and Environmental Correlations of Bone Mineral Density at Different Skeletal Sites in Females and Males

Authors: T.-L. Yang, L.-J. Zhao, Y.-J. Liu, J.-F. Liu, R. R. Recker, H.-W. Deng

Published in: Calcified Tissue International | Issue 4/2006

Login to get access

Abstract

Bone mineral density (BMD) is a complex trait having genetic and environmental determination. There are gender-specific differences in BMD measurements, and the rate of BMD changes with age and lifestyle. Previous studies have shown that the genetic loci underlying BMD variation are gender-specific in mice and humans. Our study aimed to investigate correlations between BMD at the spine, hip, and ultradistal radius (UD) and degree of shared genetic and environmental factors among them in females and males, separately. For a large sample of 4,489 subjects containing 2,667 females and 1,822 males from 512 Caucasian pedigrees, we performed bivariate variance decomposition analyses. Our results showed that the genetic correlations (ρ G ), environmental correlations (ρ E ), and phenotypical correlations (ρ P ) were all significant and positive. Strong genetic correlations were observed in both female and male groups, ranging 0.590–0.738 and 0.583–0.773, respectively. Genetic correlations of BMD at the spine, hip, and UD were generally higher than environmental correlations. In summary, we are the first to test the genetic and environmental correlations in females and males, separately. It is suggested that the phenotypic correlations of BMDs at the three different sites may have more genetic than environmental components. BMDs at the spine and hip may share more environmental components in females than males. We did not detect gender-specific difference in spine/UD and hip/UD. It is also indicated that the environmental factors that preserve or increase BMD at one skeletal site may have similar beneficial effects on some other skeletal sites and vice versa.
Literature
1.
go back to reference Brown LB, Streeten EA, Shuldiner AR, Almasy LA, Peyser PA, Mitchell BD (2004) Assessment of sex-specific genetic and environmental effects on bone mineral density. Genet Epidemiol 27:153–161CrossRefPubMed Brown LB, Streeten EA, Shuldiner AR, Almasy LA, Peyser PA, Mitchell BD (2004) Assessment of sex-specific genetic and environmental effects on bone mineral density. Genet Epidemiol 27:153–161CrossRefPubMed
2.
go back to reference Cardon LR, Garner C, Bennett ST, Mackay IJ, Edwards RM, Cornish J, Hegde M, Murray MA, Reid IR, Cundy T (2000) Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J Bone Miner Res 15:1132–1137PubMed Cardon LR, Garner C, Bennett ST, Mackay IJ, Edwards RM, Cornish J, Hegde M, Murray MA, Reid IR, Cundy T (2000) Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J Bone Miner Res 15:1132–1137PubMed
3.
go back to reference Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA (1998) Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Miner Res 13:1318–1327PubMed Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA (1998) Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Miner Res 13:1318–1327PubMed
4.
go back to reference Nguyen TV, Howard GM, Kelly PJ, Eisman JA (1998) Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol 147:3–16PubMed Nguyen TV, Howard GM, Kelly PJ, Eisman JA (1998) Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol 147:3–16PubMed
5.
6.
go back to reference Berard A, Bravo G, Gauthier P (1997) Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int 7:331–337PubMed Berard A, Bravo G, Gauthier P (1997) Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int 7:331–337PubMed
7.
go back to reference Khan KM, Bennell KL, Hopper JL, Flicker L, Nowson CA, Sherwin AJ, Crichton KJ, Harcourt PR, Wark JD (1998) Self-reported ballet classes undertaken at age 10–12 years and hip bone mineral density in later life. Osteoporos Int 8:165–173PubMed Khan KM, Bennell KL, Hopper JL, Flicker L, Nowson CA, Sherwin AJ, Crichton KJ, Harcourt PR, Wark JD (1998) Self-reported ballet classes undertaken at age 10–12 years and hip bone mineral density in later life. Osteoporos Int 8:165–173PubMed
8.
go back to reference Kiel DP, Zhang Y, Hannan MT, Anderson JJ, Baron JA, Felson DT (1996) The effect of smoking at different life stages on bone mineral density in elderly men and women. Osteoporos Int 6:240–248CrossRefPubMed Kiel DP, Zhang Y, Hannan MT, Anderson JJ, Baron JA, Felson DT (1996) The effect of smoking at different life stages on bone mineral density in elderly men and women. Osteoporos Int 6:240–248CrossRefPubMed
9.
go back to reference Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80:706–710PubMed Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80:706–710PubMed
10.
go back to reference Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associatiates, Sunderland, MA Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associatiates, Sunderland, MA
11.
go back to reference Livshits G, Deng HW, Nguyen TV, Yakovenko K, Recker RR, Eisman JA (2004) Genetics of bone mineral density: evidence for a major pleiotropic effect from an intercontinental study. J Bone Miner Res 19:914–923PubMed Livshits G, Deng HW, Nguyen TV, Yakovenko K, Recker RR, Eisman JA (2004) Genetics of bone mineral density: evidence for a major pleiotropic effect from an intercontinental study. J Bone Miner Res 19:914–923PubMed
12.
go back to reference Ralston SH, Galwey N, MacKay I, Albagha OM, Cardon L, Compston JE, Cooper C, Duncan E, Keen R, Langdahl B, McLellan A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass J, Bennett ST (2005) Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 14:943–951CrossRefPubMed Ralston SH, Galwey N, MacKay I, Albagha OM, Cardon L, Compston JE, Cooper C, Duncan E, Keen R, Langdahl B, McLellan A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass J, Bennett ST (2005) Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 14:943–951CrossRefPubMed
13.
go back to reference Kammerer CM, Schneider JL, Cole SA, Hixson JE, Samollow PB, O’Connell JR, Perez R, Dyer TD, Almasy L, Blangero J, Bauer RL, Mitchell BD (2003) Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 18:2245–2252PubMed Kammerer CM, Schneider JL, Cole SA, Hixson JE, Samollow PB, O’Connell JR, Perez R, Dyer TD, Almasy L, Blangero J, Bauer RL, Mitchell BD (2003) Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 18:2245–2252PubMed
14.
go back to reference Karasik D, Cupples LA, Hannan MT, Kiel DP (2003) Age, gender, and body mass effects on quantitative trait loci for bone mineral density: the Framingham Study. Bone 33:308–316CrossRefPubMed Karasik D, Cupples LA, Hannan MT, Kiel DP (2003) Age, gender, and body mass effects on quantitative trait loci for bone mineral density: the Framingham Study. Bone 33:308–316CrossRefPubMed
15.
go back to reference Orwoll ES, Belknap JK, Klein RF (2001) Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res 16:1962–1971PubMed Orwoll ES, Belknap JK, Klein RF (2001) Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res 16:1962–1971PubMed
16.
go back to reference Deng HW, Shen H, Xu FH, Deng HY, Conway T, Zhang HT, Recker RR (2002) Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res 17:678–686PubMed Deng HW, Shen H, Xu FH, Deng HY, Conway T, Zhang HT, Recker RR (2002) Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res 17:678–686PubMed
17.
go back to reference Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211CrossRefPubMed Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211CrossRefPubMed
18.
go back to reference Williams JT, Van Eerdewegh P, Almasy L, Blangero J (1999) Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. Likelihood formulation and simulation results. Am J Hum Genet 65:1134–1147PubMed Williams JT, Van Eerdewegh P, Almasy L, Blangero J (1999) Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. Likelihood formulation and simulation results. Am J Hum Genet 65:1134–1147PubMed
19.
go back to reference Peacock M, Koller DL, Fishburn T, Krishnan S, Lai D, Hui S, Johnston CC, Foroud T, Econs MJ (2005) Sex-specific and non-sex-specific quantitative trait loci contribute to normal variation in bone mineral density in men. J Clin Endocrinol Metab 90:3060–3066CrossRefPubMed Peacock M, Koller DL, Fishburn T, Krishnan S, Lai D, Hui S, Johnston CC, Foroud T, Econs MJ (2005) Sex-specific and non-sex-specific quantitative trait loci contribute to normal variation in bone mineral density in men. J Clin Endocrinol Metab 90:3060–3066CrossRefPubMed
20.
go back to reference Duncan EL, Cardon LR, Sinsheimer JS, Wass JA, Brown MA (2003) Site and gender specificity of inheritance of bone mineral density. J Bone Miner Res 18:1531–1538PubMed Duncan EL, Cardon LR, Sinsheimer JS, Wass JA, Brown MA (2003) Site and gender specificity of inheritance of bone mineral density. J Bone Miner Res 18:1531–1538PubMed
21.
go back to reference Naganathan V, Macgregor A, Snieder H, Nguyen T, Spector T, Sambrook P (2002) Gender differences in the genetic factors responsible for variation in bone density and ultrasound. J Bone Miner Res 17:725–733PubMed Naganathan V, Macgregor A, Snieder H, Nguyen T, Spector T, Sambrook P (2002) Gender differences in the genetic factors responsible for variation in bone density and ultrasound. J Bone Miner Res 17:725–733PubMed
22.
go back to reference Livshit G, Vainder M, Graff E, Blettner M, Schettler G, Brunner D (1997) Tel-Aviv-Heidelberg Three Generation Offspring Study: genetic and environmental sources of variation and covariation among plasma lipids, lipoproteins, and apoliproteins. Am J Hum Biol 9:357–370 Livshit G, Vainder M, Graff E, Blettner M, Schettler G, Brunner D (1997) Tel-Aviv-Heidelberg Three Generation Offspring Study: genetic and environmental sources of variation and covariation among plasma lipids, lipoproteins, and apoliproteins. Am J Hum Biol 9:357–370
23.
go back to reference Albagha OM, McGuigan FE, Reid DM, Ralston SH (2001) Estrogen receptor alpha gene polymorphisms and bone mineral density: haplotype analysis in women from the United Kingdom. J Bone Miner Res 16:128–134PubMed Albagha OM, McGuigan FE, Reid DM, Ralston SH (2001) Estrogen receptor alpha gene polymorphisms and bone mineral density: haplotype analysis in women from the United Kingdom. J Bone Miner Res 16:128–134PubMed
24.
go back to reference Gomez C, Naves ML, Barrios Y, Diaz JB, Fernandez JL, Salido E, Torres A, Cannata JB (1999) Vitamin D receptor gene polymorphisms, bone mass, bone loss and prevalence of vertebral fracture: differences in postmenopausal women and men. Osteoporos Int 10:175–182PubMed Gomez C, Naves ML, Barrios Y, Diaz JB, Fernandez JL, Salido E, Torres A, Cannata JB (1999) Vitamin D receptor gene polymorphisms, bone mass, bone loss and prevalence of vertebral fracture: differences in postmenopausal women and men. Osteoporos Int 10:175–182PubMed
25.
go back to reference Langdahl BL, Gravholt CH, Brixen K, Eriksen EF (2000) Polymorphisms in the vitamin D receptor gene and bone mass, bone turnover and osteoporotic fractures. Eur J Clin Invest 30:608–617CrossRefPubMed Langdahl BL, Gravholt CH, Brixen K, Eriksen EF (2000) Polymorphisms in the vitamin D receptor gene and bone mass, bone turnover and osteoporotic fractures. Eur J Clin Invest 30:608–617CrossRefPubMed
26.
go back to reference Liu YZ, Liu YJ, Recker RR, Deng HW (2003) Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 177:147–196CrossRefPubMed Liu YZ, Liu YJ, Recker RR, Deng HW (2003) Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 177:147–196CrossRefPubMed
27.
go back to reference Need AG, Horowitz M, Stiliano A, Scopacasa F, Morris HA, Chatterton BE (1996) Vitamin D receptor genotypes are related to bone size and bone density in men. Eur J Clin Invest 26:793–796CrossRefPubMed Need AG, Horowitz M, Stiliano A, Scopacasa F, Morris HA, Chatterton BE (1996) Vitamin D receptor genotypes are related to bone size and bone density in men. Eur J Clin Invest 26:793–796CrossRefPubMed
28.
go back to reference Zmuda JM, Cauley JA, Ferrell RE (1999) Recent progress in understanding the genetic susceptibility to osteoporosis. Genet Epidemiol 16:356–367CrossRefPubMed Zmuda JM, Cauley JA, Ferrell RE (1999) Recent progress in understanding the genetic susceptibility to osteoporosis. Genet Epidemiol 16:356–367CrossRefPubMed
29.
go back to reference Marc J, Prezelj J, Komel R, Kocijancic A (2000) Association of vitamin D receptor gene polymorphism with bone mineral density in Slovenian postmenopausal women. Gynecol Endocrinol 14:60–64PubMed Marc J, Prezelj J, Komel R, Kocijancic A (2000) Association of vitamin D receptor gene polymorphism with bone mineral density in Slovenian postmenopausal women. Gynecol Endocrinol 14:60–64PubMed
30.
go back to reference Duncan EL, Brown MA, Sinsheimer J, Bell J, Carr AJ, Wordsworth BP, Wass JA (1999) Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res 14:1993–1999PubMed Duncan EL, Brown MA, Sinsheimer J, Bell J, Carr AJ, Wordsworth BP, Wass JA (1999) Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res 14:1993–1999PubMed
31.
go back to reference Eccleshall TR, Garnero P, Gross C, Delmas PD, Feldman D (1998) Lack of correlation between start codon polymorphism of the vitamin D receptor gene and bone mineral density in premenopausal French women: the OFELY study. J Bone Miner Res 13:31–35PubMed Eccleshall TR, Garnero P, Gross C, Delmas PD, Feldman D (1998) Lack of correlation between start codon polymorphism of the vitamin D receptor gene and bone mineral density in premenopausal French women: the OFELY study. J Bone Miner Res 13:31–35PubMed
32.
go back to reference Devoto M, Shimoya K, Caminis J, Ott J, Tenenhouse A, Whyte MP, Sereda L, Hall S, Considine E, Williams CJ, Tromp G, Kuivaniemi H, Ala-Kokko L, Prockop DJ, Spotila LD (1998) First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 6:151–157CrossRefPubMed Devoto M, Shimoya K, Caminis J, Ott J, Tenenhouse A, Whyte MP, Sereda L, Hall S, Considine E, Williams CJ, Tromp G, Kuivaniemi H, Ala-Kokko L, Prockop DJ, Spotila LD (1998) First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 6:151–157CrossRefPubMed
33.
go back to reference Wilson SG, Reed PW, Bansal A, Chiano M, Lindersson M, Langdown M, Prince RL, Thompson D, Thompson E, Bailey M, Kleyn PW, Sambrook P, Shi MM, Spector TD (2003) Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 72:144–155CrossRefPubMed Wilson SG, Reed PW, Bansal A, Chiano M, Lindersson M, Langdown M, Prince RL, Thompson D, Thompson E, Bailey M, Kleyn PW, Sambrook P, Shi MM, Spector TD (2003) Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 72:144–155CrossRefPubMed
34.
go back to reference Flicker L, Hopper JL, Rodgers L, Kaymakci B, Green RM, Wark JD (1995) Bone density determinants in elderly women: a twin study. J Bone Miner Res 10:1607–1613PubMed Flicker L, Hopper JL, Rodgers L, Kaymakci B, Green RM, Wark JD (1995) Bone density determinants in elderly women: a twin study. J Bone Miner Res 10:1607–1613PubMed
35.
go back to reference Devoto M, Spotila LD, Stabley DL, Wharton GN, Rydbeck H, Korkko J, Kosich R, Prockop D, Tenenhouse A, Sol-Church K (2005) Univariate and bivariate variance component linkage analysis of a whole-genome scan for loci contributing to bone mineral density. Eur J Hum Genet 13:781–788CrossRefPubMed Devoto M, Spotila LD, Stabley DL, Wharton GN, Rydbeck H, Korkko J, Kosich R, Prockop D, Tenenhouse A, Sol-Church K (2005) Univariate and bivariate variance component linkage analysis of a whole-genome scan for loci contributing to bone mineral density. Eur J Hum Genet 13:781–788CrossRefPubMed
36.
go back to reference Audi L, Garcia-Ramirez M, Carrascosa A (1999) Genetic determinants of bone mass. Horm Res 51:105–123PubMed Audi L, Garcia-Ramirez M, Carrascosa A (1999) Genetic determinants of bone mass. Horm Res 51:105–123PubMed
37.
go back to reference Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99:1287–1294PubMed Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99:1287–1294PubMed
38.
go back to reference Johnston CC Jr, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327:82–87PubMed Johnston CC Jr, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327:82–87PubMed
39.
go back to reference Kohrt WM, Birge SJ Jr (1995) Differential effects of estrogen treatment on bone mineral density of the spine, hip, wrist and total body in late postmenopausal women. Osteoporos Int 5:150–155CrossRefPubMed Kohrt WM, Birge SJ Jr (1995) Differential effects of estrogen treatment on bone mineral density of the spine, hip, wrist and total body in late postmenopausal women. Osteoporos Int 5:150–155CrossRefPubMed
Metadata
Title
Genetic and Environmental Correlations of Bone Mineral Density at Different Skeletal Sites in Females and Males
Authors
T.-L. Yang
L.-J. Zhao
Y.-J. Liu
J.-F. Liu
R. R. Recker
H.-W. Deng
Publication date
01-04-2006
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 4/2006
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-005-0267-5

Other articles of this Issue 4/2006

Calcified Tissue International 4/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.