Skip to main content
Top
Published in: Experimental Brain Research 4/2013

01-04-2013 | Research Article

The effects of visual training on multisensory temporal processing

Authors: Ryan A. Stevenson, Magdalena M. Wilson, Albert R. Powers, Mark T. Wallace

Published in: Experimental Brain Research | Issue 4/2013

Login to get access

Abstract

The importance of multisensory integration for human behavior and perception is well documented, as is the impact that temporal synchrony has on driving such integration. Thus, the more temporally coincident two sensory inputs from different modalities are, the more likely they will be perceptually bound. This temporal integration process is captured by the construct of the temporal binding window—the range of temporal offsets within which an individual is able to perceptually bind inputs across sensory modalities. Recent work has shown that this window is malleable and can be narrowed via a multisensory perceptual feedback training process. In the current study, we seek to extend this by examining the malleability of the multisensory temporal binding window through changes in unisensory experience. Specifically, we measured the ability of visual perceptual feedback training to induce changes in the multisensory temporal binding window. Visual perceptual training with feedback successfully improved temporal visual processing, and more importantly, this visual training increased the temporal precision across modalities, which manifested as a narrowing of the multisensory temporal binding window. These results are the first to establish the ability of unisensory temporal training to modulate multisensory temporal processes, findings that can provide mechanistic insights into multisensory integration and which may have a host of practical applications.
Literature
go back to reference Adini Y, Sagi D, Tsodyks M (2002) Context-enabled learning in the human visual system. Nature 415:790–793CrossRefPubMed Adini Y, Sagi D, Tsodyks M (2002) Context-enabled learning in the human visual system. Nature 415:790–793CrossRefPubMed
go back to reference Alais D, Cass J (2010) Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition. PLoS ONE 5:e11283CrossRefPubMed Alais D, Cass J (2010) Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition. PLoS ONE 5:e11283CrossRefPubMed
go back to reference Andersen TS, Tiippana K, Sams M (2004) Factors influencing audiovisual fission and fusion illusions. Brain Res Cogn Brain Res 21:301–308CrossRefPubMed Andersen TS, Tiippana K, Sams M (2004) Factors influencing audiovisual fission and fusion illusions. Brain Res Cogn Brain Res 21:301–308CrossRefPubMed
go back to reference Bastien-Toniazzo M, Stroumza A, Cavé C (2009) Audio-visual perception and integration in developmental dyslexia: An exploratory study using the McGurk effect. Current Psychol Lett 25 Bastien-Toniazzo M, Stroumza A, Cavé C (2009) Audio-visual perception and integration in developmental dyslexia: An exploratory study using the McGurk effect. Current Psychol Lett 25
go back to reference Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, Barthelemy C, Mouren MC, Artiges E, Samson Y, Brunelle F, Frackowiak RS, Zilbovicius M (2004) Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369CrossRefPubMed Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, Barthelemy C, Mouren MC, Artiges E, Samson Y, Brunelle F, Frackowiak RS, Zilbovicius M (2004) Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369CrossRefPubMed
go back to reference Colonius H, Diederich A (2004) Multisensory interaction in saccadic reaction time: a time-window-of-integration model. J Cogn Neurosci 16:1000–1009CrossRefPubMed Colonius H, Diederich A (2004) Multisensory interaction in saccadic reaction time: a time-window-of-integration model. J Cogn Neurosci 16:1000–1009CrossRefPubMed
go back to reference Conrey BL, Pisoni DB (2004) Detection of auditory-visual asynchrony in speech and nonspeech signals. In: Pisoni DB (ed) Research on spoken language processing, vol 26. Indiana University, Bloomington, pp 71–94 Conrey BL, Pisoni DB (2004) Detection of auditory-visual asynchrony in speech and nonspeech signals. In: Pisoni DB (ed) Research on spoken language processing, vol 26. Indiana University, Bloomington, pp 71–94
go back to reference Conrey B, Pisoni DB (2006) Auditory-visual speech perception and synchrony detection for speech and nonspeech signals. J Acoust Soc Am 119:4065–4073CrossRefPubMed Conrey B, Pisoni DB (2006) Auditory-visual speech perception and synchrony detection for speech and nonspeech signals. J Acoust Soc Am 119:4065–4073CrossRefPubMed
go back to reference Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept Psychophys 66:1388–1404CrossRefPubMed Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept Psychophys 66:1388–1404CrossRefPubMed
go back to reference Foss-Feig JH, Kwakye LD, Cascio CJ, Burnette CP, Kadivar H, Stone WL, Wallace MT (2010) An extended multisensory temporal binding window in autism spectrum disorders. Exp Brain Res 203:381–389CrossRefPubMed Foss-Feig JH, Kwakye LD, Cascio CJ, Burnette CP, Kadivar H, Stone WL, Wallace MT (2010) An extended multisensory temporal binding window in autism spectrum disorders. Exp Brain Res 203:381–389CrossRefPubMed
go back to reference Foucher JR, Lacambre M, Pham BT, Giersch A, Elliott MA (2007) Low time resolution in schizophrenia Lengthened windows of simultaneity for visual, auditory and bimodal stimuli. Schizophr Res 97:118–127CrossRefPubMed Foucher JR, Lacambre M, Pham BT, Giersch A, Elliott MA (2007) Low time resolution in schizophrenia Lengthened windows of simultaneity for visual, auditory and bimodal stimuli. Schizophr Res 97:118–127CrossRefPubMed
go back to reference Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7:773–778CrossRefPubMed Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7:773–778CrossRefPubMed
go back to reference Gervais H, Belin P, Boddaert N, Leboyer M, Coez A, Sfaello I, Barthelemy C, Brunelle F, Samson Y, Zilbovicius M (2004) Abnormal cortical voice processing in autism. Nat Neurosci 7:801–802CrossRefPubMed Gervais H, Belin P, Boddaert N, Leboyer M, Coez A, Sfaello I, Barthelemy C, Brunelle F, Samson Y, Zilbovicius M (2004) Abnormal cortical voice processing in autism. Nat Neurosci 7:801–802CrossRefPubMed
go back to reference Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:179–325CrossRef Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:179–325CrossRef
go back to reference Hairston WD, Burdette JH, Flowers DL, Wood FB, Wallace MT (2005) Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Exp Brain Res 166:474–480CrossRefPubMed Hairston WD, Burdette JH, Flowers DL, Wood FB, Wallace MT (2005) Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Exp Brain Res 166:474–480CrossRefPubMed
go back to reference Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293CrossRefPubMed Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293CrossRefPubMed
go back to reference Hillock AR, Powers AR, Wallace MT (2011) Binding of sights and sounds: age-related changes in multisensory temporal processing. Neuropsychologia 49:461–467CrossRefPubMed Hillock AR, Powers AR, Wallace MT (2011) Binding of sights and sounds: age-related changes in multisensory temporal processing. Neuropsychologia 49:461–467CrossRefPubMed
go back to reference James TW, Stevenson RA, Kim S (2012) Inverse effectiveness in multisensory processing. In: Stein BE (ed) The new handbook of multisensory processes. MIT Press, Cambridge, MA James TW, Stevenson RA, Kim S (2012) Inverse effectiveness in multisensory processing. In: Stein BE (ed) The new handbook of multisensory processes. MIT Press, Cambridge, MA
go back to reference Keetels M, Vroomen J (2005) The role of spatial disparity and hemifields in audio-visual temporal order judgments. Exp Brain Res 167:635–640CrossRefPubMed Keetels M, Vroomen J (2005) The role of spatial disparity and hemifields in audio-visual temporal order judgments. Exp Brain Res 167:635–640CrossRefPubMed
go back to reference Kim RS, Seitz AR, Shams L (2008) Benefits of stimulus congruency for multisensory facilitation of visual learning. PLoS ONE 3:e1532CrossRefPubMed Kim RS, Seitz AR, Shams L (2008) Benefits of stimulus congruency for multisensory facilitation of visual learning. PLoS ONE 3:e1532CrossRefPubMed
go back to reference Kwakye LD, Foss-Feig JH, Cascio CJ, Stone WL, Wallace MT (2011) Altered auditory and multisensory temporal processing in autism spectrum disorders. Front Integr Neurosci 4:129CrossRefPubMed Kwakye LD, Foss-Feig JH, Cascio CJ, Stone WL, Wallace MT (2011) Altered auditory and multisensory temporal processing in autism spectrum disorders. Front Integr Neurosci 4:129CrossRefPubMed
go back to reference Levitt JG, Blanton RE, Smalley S, Thompson PM, Guthrie D, McCracken JT, Sadoun T, Heinichen L, Toga AW (2003) Cortical sulcal maps in autism. Cereb Cortex 13:728–735CrossRefPubMed Levitt JG, Blanton RE, Smalley S, Thompson PM, Guthrie D, McCracken JT, Sadoun T, Heinichen L, Toga AW (2003) Cortical sulcal maps in autism. Cereb Cortex 13:728–735CrossRefPubMed
go back to reference Lovelace CT, Stein BE, Wallace MT (2003) An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. Brain Res Cogn Brain Res 17:447–453CrossRefPubMed Lovelace CT, Stein BE, Wallace MT (2003) An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. Brain Res Cogn Brain Res 17:447–453CrossRefPubMed
go back to reference Macaluso E, George N, Dolan R, Spence C, Driver J (2004) Spatial and temporal factors during processing of audiovisual speech: a PET study. Neuroimage 21:725–732CrossRefPubMed Macaluso E, George N, Dolan R, Spence C, Driver J (2004) Spatial and temporal factors during processing of audiovisual speech: a PET study. Neuroimage 21:725–732CrossRefPubMed
go back to reference Meredith MA, Stein BE (1986a) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365:350–354CrossRefPubMed Meredith MA, Stein BE (1986a) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365:350–354CrossRefPubMed
go back to reference Meredith MA, Stein BE (1986b) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662PubMed Meredith MA, Stein BE (1986b) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662PubMed
go back to reference Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7:3215–3229PubMed Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7:3215–3229PubMed
go back to reference Miller LM, D’Esposito M (2005) Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. J Neurosci 25:5884–5893CrossRefPubMed Miller LM, D’Esposito M (2005) Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. J Neurosci 25:5884–5893CrossRefPubMed
go back to reference Navarra J, Vatakis A, Zampini M, Soto-Faraco S, Humphreys W, Spence C (2005) Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Brain Res Cogn Brain Res 25:499–507CrossRefPubMed Navarra J, Vatakis A, Zampini M, Soto-Faraco S, Humphreys W, Spence C (2005) Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Brain Res Cogn Brain Res 25:499–507CrossRefPubMed
go back to reference Nelson WT, Hettinger LJ, Cunningham JA, Brickman BJ, Haas MW, McKinley RL (1998) Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Hum Factors 40:452–460CrossRefPubMed Nelson WT, Hettinger LJ, Cunningham JA, Brickman BJ, Haas MW, McKinley RL (1998) Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Hum Factors 40:452–460CrossRefPubMed
go back to reference Pekkola J, Laasonen M, Ojanen V, Autti T, Jaaskelainen IP, Kujala T, Sams M (2006) Perception of matching and conflicting audiovisual speech in dyslexic and fluent readers: an fMRI study at 3 T. Neuroimage 29:797–807CrossRefPubMed Pekkola J, Laasonen M, Ojanen V, Autti T, Jaaskelainen IP, Kujala T, Sams M (2006) Perception of matching and conflicting audiovisual speech in dyslexic and fluent readers: an fMRI study at 3 T. Neuroimage 29:797–807CrossRefPubMed
go back to reference Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442CrossRefPubMed Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442CrossRefPubMed
go back to reference Pelphrey KA, Carter EJ (2008a) Brain mechanisms for social perception: lessons from autism and typical development. Ann N Y Acad Sci 1145:283–299CrossRefPubMed Pelphrey KA, Carter EJ (2008a) Brain mechanisms for social perception: lessons from autism and typical development. Ann N Y Acad Sci 1145:283–299CrossRefPubMed
go back to reference Pelphrey KA, Carter EJ (2008b) Charting the typical and atypical development of the social brain. Dev Psychopathol 20:1081–1102CrossRefPubMed Pelphrey KA, Carter EJ (2008b) Charting the typical and atypical development of the social brain. Dev Psychopathol 20:1081–1102CrossRefPubMed
go back to reference Pöppel E, Schill K, von Steinbüchel N (1990) Sensory integration within temporally neutral systems states: a hypothesis. Naturwissenschaften 77:89–91CrossRefPubMed Pöppel E, Schill K, von Steinbüchel N (1990) Sensory integration within temporally neutral systems states: a hypothesis. Naturwissenschaften 77:89–91CrossRefPubMed
go back to reference Powers AR 3rd, Hillock AR, Wallace MT (2009) Perceptual training narrows the temporal window of multisensory binding. J Neurosci 29:12265–12274CrossRefPubMed Powers AR 3rd, Hillock AR, Wallace MT (2009) Perceptual training narrows the temporal window of multisensory binding. J Neurosci 29:12265–12274CrossRefPubMed
go back to reference Powers AR 3rd, Hevey MA, Wallace MT (2012) Neural correlates of multisensory perceptual learning. J Neurosci 32:6263–6274CrossRefPubMed Powers AR 3rd, Hevey MA, Wallace MT (2012) Neural correlates of multisensory perceptual learning. J Neurosci 32:6263–6274CrossRefPubMed
go back to reference Richards T, Stevenson J, Crouch J, Johnson LC, Maravilla K, Stock P, Abbott R, Berninger V (2008) Tract-based spatial statistics of diffusion tensor imaging in adults with dyslexia. AJNR Am J Neuroradiol 29:1134–1139CrossRefPubMed Richards T, Stevenson J, Crouch J, Johnson LC, Maravilla K, Stock P, Abbott R, Berninger V (2008) Tract-based spatial statistics of diffusion tensor imaging in adults with dyslexia. AJNR Am J Neuroradiol 29:1134–1139CrossRefPubMed
go back to reference Roach NW, Heron J, Whitaker D, McGraw PV (2011) Asynchrony adaption reveals neural population code for audio-visual timing. Proc R Soc 278:9CrossRef Roach NW, Heron J, Whitaker D, McGraw PV (2011) Asynchrony adaption reveals neural population code for audio-visual timing. Proc R Soc 278:9CrossRef
go back to reference Royal DW, Carriere BN, Wallace MT (2009) Spatiotemporal architecture of cortical receptive fields and its impact on multisensory interactions. Exp Brain Res 198:127–136CrossRefPubMed Royal DW, Carriere BN, Wallace MT (2009) Spatiotemporal architecture of cortical receptive fields and its impact on multisensory interactions. Exp Brain Res 198:127–136CrossRefPubMed
go back to reference Schall S, Quigley C, Onat S, Konig P (2009) Visual stimulus locking of EEG is modulated by temporal congruency of auditory stimuli. Exp Brain Res 198:137–151CrossRefPubMed Schall S, Quigley C, Onat S, Konig P (2009) Visual stimulus locking of EEG is modulated by temporal congruency of auditory stimuli. Exp Brain Res 198:137–151CrossRefPubMed
go back to reference Seitz AR, Nanez JE Sr, Holloway SR, Watanabe T (2006) Perceptual learning of motion leads to faster flicker perception. PLoS ONE 1:e28CrossRefPubMed Seitz AR, Nanez JE Sr, Holloway SR, Watanabe T (2006) Perceptual learning of motion leads to faster flicker perception. PLoS ONE 1:e28CrossRefPubMed
go back to reference Senkowski D, Talsma D, Grigutsch M, Herrmann CS, Woldorff MG (2007) Good times for multisensory integration: effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia 45:561–571CrossRefPubMed Senkowski D, Talsma D, Grigutsch M, Herrmann CS, Woldorff MG (2007) Good times for multisensory integration: effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia 45:561–571CrossRefPubMed
go back to reference Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52CrossRefPubMed Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52CrossRefPubMed
go back to reference Spence C (2007) Audiovisual multisensory integration. Acoustics Sci Technol 28:61–70CrossRef Spence C (2007) Audiovisual multisensory integration. Acoustics Sci Technol 28:61–70CrossRef
go back to reference Stein B, Meredith MA (1993) The merging of the senses. MIT Press, Boston, MA Stein B, Meredith MA (1993) The merging of the senses. MIT Press, Boston, MA
go back to reference Stein BE, Wallace MT (1996) Comparisons of cross-modality integration in midbrain and cortex. Prog Brain Res 112:289–299CrossRefPubMed Stein BE, Wallace MT (1996) Comparisons of cross-modality integration in midbrain and cortex. Prog Brain Res 112:289–299CrossRefPubMed
go back to reference Stevenson RA, James TW (2009) Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. Neuroimage 44:1210–1223CrossRefPubMed Stevenson RA, James TW (2009) Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. Neuroimage 44:1210–1223CrossRefPubMed
go back to reference Stevenson RA, Wallace MW (under review) Multisensory temporal integration: task and stimulus dependencies Exp Brain Res Stevenson RA, Wallace MW (under review) Multisensory temporal integration: task and stimulus dependencies Exp Brain Res
go back to reference Stevenson RA, Altieri NA, Kim S, Pisoni DB, James TW (2010) Neural processing of asynchronous audiovisual speech perception. Neuroimage 49:3308–3318CrossRefPubMed Stevenson RA, Altieri NA, Kim S, Pisoni DB, James TW (2010) Neural processing of asynchronous audiovisual speech perception. Neuroimage 49:3308–3318CrossRefPubMed
go back to reference Stevenson RA, VanDerKlok RM, Pisoni DB, James TW (2011) Discrete neural substrates underlie complementary audiovisual speech integration processes. Neuroimage 55:1339–1345CrossRefPubMed Stevenson RA, VanDerKlok RM, Pisoni DB, James TW (2011) Discrete neural substrates underlie complementary audiovisual speech integration processes. Neuroimage 55:1339–1345CrossRefPubMed
go back to reference Stevenson RA, Zemtsov RK, Wallace MT (2012) Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. J Exp Psychol Hum Percept Perform 38:1517–1529 Stevenson RA, Zemtsov RK, Wallace MT (2012) Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. J Exp Psychol Hum Percept Perform 38:1517–1529
go back to reference Talsma D, Senkowski D, Woldorff MG (2009) Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli. Exp Brain Res 198:313–328CrossRefPubMed Talsma D, Senkowski D, Woldorff MG (2009) Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli. Exp Brain Res 198:313–328CrossRefPubMed
go back to reference van Atteveldt NM, Formisano E, Blomert L, Goebel R (2007) The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex 17:962–974CrossRefPubMed van Atteveldt NM, Formisano E, Blomert L, Goebel R (2007) The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex 17:962–974CrossRefPubMed
go back to reference van Eijk RL, Kohlrausch A, Juola JF, van de Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Percept Psychophys 70:955–968CrossRefPubMed van Eijk RL, Kohlrausch A, Juola JF, van de Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Percept Psychophys 70:955–968CrossRefPubMed
go back to reference van Wassenhove V, Grant KW, Poeppel D (2007) Temporal window of integration in auditory-visual speech perception. Neuropsychologia 45:598–607CrossRefPubMed van Wassenhove V, Grant KW, Poeppel D (2007) Temporal window of integration in auditory-visual speech perception. Neuropsychologia 45:598–607CrossRefPubMed
go back to reference Vatakis A, Spence C (2006) Audiovisual synchrony perception for music, speech, and object actions. Brain Res 1111:134–142CrossRefPubMed Vatakis A, Spence C (2006) Audiovisual synchrony perception for music, speech, and object actions. Brain Res 1111:134–142CrossRefPubMed
go back to reference Vatakis A, Spence C (2007) Crossmodal binding: evaluating the “unity assumption” using audiovisual speech stimuli. Percept Psychophys 69:744–756CrossRefPubMed Vatakis A, Spence C (2007) Crossmodal binding: evaluating the “unity assumption” using audiovisual speech stimuli. Percept Psychophys 69:744–756CrossRefPubMed
go back to reference Vatakis A, Navarra J, Soto-Faraco S, Spence C (2007) Temporal recalibration during asynchronous audiovisual speech perception. Exp Brain Res 181:173–181CrossRefPubMed Vatakis A, Navarra J, Soto-Faraco S, Spence C (2007) Temporal recalibration during asynchronous audiovisual speech perception. Exp Brain Res 181:173–181CrossRefPubMed
go back to reference Vatakis A, Ghazanfar AA, Spence C (2008) Facilitation of multisensory integration by the “unity effect” reveals that speech is special. J Vis 8(14):1–11 Vatakis A, Ghazanfar AA, Spence C (2008) Facilitation of multisensory integration by the “unity effect” reveals that speech is special. J Vis 8(14):1–11
go back to reference Vroomen J, Baart M (2009) Phonetic recalibration only occurs in speech mode. Cognition 110:254–259CrossRefPubMed Vroomen J, Baart M (2009) Phonetic recalibration only occurs in speech mode. Cognition 110:254–259CrossRefPubMed
go back to reference Vroomen J, Keetels M, de Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Brain Res Cogn Brain Res 22:32–35CrossRefPubMed Vroomen J, Keetels M, de Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Brain Res Cogn Brain Res 22:32–35CrossRefPubMed
go back to reference Wallace MT, Roberson GE, Hairston WD, Stein BE, Vaughan JW, Schirillo JA (2004) Unifying multisensory signals across time and space. Exp Brain Res 158:252–258CrossRefPubMed Wallace MT, Roberson GE, Hairston WD, Stein BE, Vaughan JW, Schirillo JA (2004) Unifying multisensory signals across time and space. Exp Brain Res 158:252–258CrossRefPubMed
go back to reference Wearden JH, Edwards H, Fakhri M, Percival A (1998) Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. Q J Exp Psychol B 51:97–120PubMed Wearden JH, Edwards H, Fakhri M, Percival A (1998) Why “sounds are judged longer than lights”: application of a model of the internal clock in humans. Q J Exp Psychol B 51:97–120PubMed
go back to reference Wilkinson LK, Meredith MA, Stein BE (1996) The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Exp Brain Res 112:1–10CrossRefPubMed Wilkinson LK, Meredith MA, Stein BE (1996) The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Exp Brain Res 112:1–10CrossRefPubMed
go back to reference Zampini M, Guest S, Shore DI, Spence C (2005) Audio-visual simultaneity judgments. Percept Psychophys 67:531–544CrossRefPubMed Zampini M, Guest S, Shore DI, Spence C (2005) Audio-visual simultaneity judgments. Percept Psychophys 67:531–544CrossRefPubMed
Metadata
Title
The effects of visual training on multisensory temporal processing
Authors
Ryan A. Stevenson
Magdalena M. Wilson
Albert R. Powers
Mark T. Wallace
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 4/2013
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-012-3387-y

Other articles of this Issue 4/2013

Experimental Brain Research 4/2013 Go to the issue