Skip to main content
Top
Published in: Osteoporosis International 5/2007

01-05-2007 | Review

The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis

Authors: A. M. Briggs, A. M. Greig, J. D. Wark

Published in: Osteoporosis International | Issue 5/2007

Login to get access

Abstract

Once an initial vertebral fracture is sustained, the risk of subsequent vertebral fracture increases significantly. This phenomenon has been termed the “vertebral fracture cascade”. Mechanisms underlying this fracture cascade are inadequately understood, creating uncertainty in the clinical environment regarding prevention of further fractures. The cascade cannot be explained by low bone mass alone, suggesting that factors independent of this parameter contribute to its aetiopathogenesis. This review explores physiologic properties that may help to explain the vertebral fracture cascade. Differences in bone properties, including bone mineral density and bone quality, between individuals with and those without osteoporotic vertebral fractures are discussed. Evidence suggests that non-bone parameters differ between individuals with and those without osteoporotic vertebral fractures. Spinal properties, including vertebral macroarchitecture, intervertebral disc integrity, spinal curvature and spinal loading are compared in these groups of individuals. Cross-sectional studies also indicate that neurophysiologic properties, particularly trunk control and balance, are affected by the presence of a vertebral fracture. This review provides a synthesis of the literature to highlight the multi-factorial aetiopathogenesis of the vertebral fracture cascade. With a more comprehensive understanding of the mechanisms underlying this clinical problem, more effective preventative strategies may be developed to offset the fracture cascade.
Literature
1.
go back to reference Oleksik A, Ewing S, Shen W et al (2005) Impact of incident vertebral fractures on health related quality of life (HRQOL) in postmenopausal women with prevalent vertebral fractures. Osteoporos Int 16:861–870PubMedCrossRef Oleksik A, Ewing S, Shen W et al (2005) Impact of incident vertebral fractures on health related quality of life (HRQOL) in postmenopausal women with prevalent vertebral fractures. Osteoporos Int 16:861–870PubMedCrossRef
2.
go back to reference Ensrud KE, Nevitt MC, Palermo L et al (1999) What proportion of incident morphometric vertebral fractures are clinically diagnosed and vice versa. J Bone Miner Res 14:S138CrossRef Ensrud KE, Nevitt MC, Palermo L et al (1999) What proportion of incident morphometric vertebral fractures are clinically diagnosed and vice versa. J Bone Miner Res 14:S138CrossRef
3.
go back to reference Delmas PD, van de Langerijt L, Watts NB et al (2005) Underdiagnosis of vertebral fracture is a worldwide problem: the IMPACT study. J Bone Miner Res 20:557–563PubMedCrossRef Delmas PD, van de Langerijt L, Watts NB et al (2005) Underdiagnosis of vertebral fracture is a worldwide problem: the IMPACT study. J Bone Miner Res 20:557–563PubMedCrossRef
4.
go back to reference Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323PubMedCrossRef Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323PubMedCrossRef
5.
go back to reference Lunt M, O’Neill TW, Felsenberg D et al (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European prospective osteoporosis study (EPOS). Bone 33:505–513PubMedCrossRef Lunt M, O’Neill TW, Felsenberg D et al (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European prospective osteoporosis study (EPOS). Bone 33:505–513PubMedCrossRef
6.
go back to reference Ross PD, Davis JW, Epstein RS et al (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923PubMed Ross PD, Davis JW, Epstein RS et al (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923PubMed
7.
go back to reference Ross PD, Genant HK, Davis JW et al (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126PubMedCrossRef Ross PD, Genant HK, Davis JW et al (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126PubMedCrossRef
8.
go back to reference Ensrud KE, Black DM, Harris F et al (1997) Correlates of kyphosis in older women. J Amer Geriat Soc 45:682–687PubMed Ensrud KE, Black DM, Harris F et al (1997) Correlates of kyphosis in older women. J Amer Geriat Soc 45:682–687PubMed
9.
go back to reference Gabriel SE, Tosteson ANA, Leibson CL et al (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13:323–330PubMedCrossRef Gabriel SE, Tosteson ANA, Leibson CL et al (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13:323–330PubMedCrossRef
10.
go back to reference Lindsay R, Burge RT, Strauss DM (2005) One year outcomes and costs following a vertebral fracture. Osteoporos Int 16:78–85PubMedCrossRef Lindsay R, Burge RT, Strauss DM (2005) One year outcomes and costs following a vertebral fracture. Osteoporos Int 16:78–85PubMedCrossRef
11.
go back to reference Pluijm SFM, Tromp AM, Smit JH et al (2000) Consequences of vertebral deformities in older men and women. J Bone Miner Res 15:1564–1572PubMedCrossRef Pluijm SFM, Tromp AM, Smit JH et al (2000) Consequences of vertebral deformities in older men and women. J Bone Miner Res 15:1564–1572PubMedCrossRef
12.
13.
go back to reference Singer K, Edmondston S, Day R et al (1995) Prediction of thoracic and lumbar vertebral body compressive strength. Correlations with bone mineral density and vertebral region. Bone 17:167–174PubMedCrossRef Singer K, Edmondston S, Day R et al (1995) Prediction of thoracic and lumbar vertebral body compressive strength. Correlations with bone mineral density and vertebral region. Bone 17:167–174PubMedCrossRef
14.
go back to reference NIH Consensus Development Panel on Osteoporosis Prevention (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRef NIH Consensus Development Panel on Osteoporosis Prevention (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRef
16.
go back to reference Seeman E, Delmas PD (2006) Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261PubMedCrossRef Seeman E, Delmas PD (2006) Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261PubMedCrossRef
17.
18.
go back to reference Borah B, Dufresne TE, Chmielewski PI et al (2002) Risedronate preserves trabecular architecture and increases bone strength in vertebrae of ovariectomized minipigs as measured by three-dimensional micro-computed tomography. J Bone Miner Res 17:1139–1147PubMedCrossRef Borah B, Dufresne TE, Chmielewski PI et al (2002) Risedronate preserves trabecular architecture and increases bone strength in vertebrae of ovariectomized minipigs as measured by three-dimensional micro-computed tomography. J Bone Miner Res 17:1139–1147PubMedCrossRef
19.
go back to reference Kabel J, Van-Rietbergen B, Odgaard A et al (1999) Constitutive relationships of fabric density, and elastic properties in cancellous bone architecture. Bone 25:481–486PubMedCrossRef Kabel J, Van-Rietbergen B, Odgaard A et al (1999) Constitutive relationships of fabric density, and elastic properties in cancellous bone architecture. Bone 25:481–486PubMedCrossRef
20.
go back to reference Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of the effect of alendronate on risk of fracture in women without existing vertebral fractures. Lancet 348:1535–1541PubMedCrossRef Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of the effect of alendronate on risk of fracture in women without existing vertebral fractures. Lancet 348:1535–1541PubMedCrossRef
21.
go back to reference Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. JAMA 282:637–645PubMedCrossRef Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. JAMA 282:637–645PubMedCrossRef
22.
go back to reference Fazzalari NL, Forwood MR, Smith K et al (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 22:381–388PubMedCrossRef Fazzalari NL, Forwood MR, Smith K et al (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone 22:381–388PubMedCrossRef
23.
go back to reference Legrand E, Chappard D, Pascaretti C et al (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19PubMedCrossRef Legrand E, Chappard D, Pascaretti C et al (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19PubMedCrossRef
24.
go back to reference Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215PubMed Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215PubMed
25.
go back to reference Grey C, Young R, Bearcroft PWP et al (1996) Vertebral deformity in the thoracic spine in post-menopausal women: value of lumbar spine bone density. Br J Radiol 69:137–142PubMed Grey C, Young R, Bearcroft PWP et al (1996) Vertebral deformity in the thoracic spine in post-menopausal women: value of lumbar spine bone density. Br J Radiol 69:137–142PubMed
26.
go back to reference Hordon LD, Raisi M, Aaron JE et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture. I. Two-dimensional histology. Bone 27:271–276PubMedCrossRef Hordon LD, Raisi M, Aaron JE et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture. I. Two-dimensional histology. Bone 27:271–276PubMedCrossRef
27.
go back to reference Jergas M, Breitenseher M, Gluer CC et al (1995) Which vertebrae should be assessed using lateral dual-energy x-ray absorptiometry of the lumbar spine. Osteoporos Int 5:196–204PubMedCrossRef Jergas M, Breitenseher M, Gluer CC et al (1995) Which vertebrae should be assessed using lateral dual-energy x-ray absorptiometry of the lumbar spine. Osteoporos Int 5:196–204PubMedCrossRef
28.
go back to reference Mitra D, Elvins DM, Speden DJ et al (2000) The prevalence of vertebral fractures in mild ankylosing spondylitis and their relationship to bone mineral density. Rheumatology 39:85–89PubMedCrossRef Mitra D, Elvins DM, Speden DJ et al (2000) The prevalence of vertebral fractures in mild ankylosing spondylitis and their relationship to bone mineral density. Rheumatology 39:85–89PubMedCrossRef
29.
go back to reference Ciarelli TE, Fyhrie DP, Parfitt AM (2003) Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32:311–315PubMedCrossRef Ciarelli TE, Fyhrie DP, Parfitt AM (2003) Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32:311–315PubMedCrossRef
30.
go back to reference Cvijanovic O, Bobinac D, Zoricic S et al (2004) Age and region dependent changes in human lumbar vertebral bone. A histomorphometric study. Spine 24:2370–2375CrossRef Cvijanovic O, Bobinac D, Zoricic S et al (2004) Age and region dependent changes in human lumbar vertebral bone. A histomorphometric study. Spine 24:2370–2375CrossRef
31.
go back to reference Simpson EK, Parkinson IH, Manthey B et al (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687PubMedCrossRef Simpson EK, Parkinson IH, Manthey B et al (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687PubMedCrossRef
32.
go back to reference Thomsen JS, Ebbesen EN, Mosekilde LI (2002) Zone-dependent changes in human vertebral trabecular bone: clinical implications. Bone 30:664–669PubMedCrossRef Thomsen JS, Ebbesen EN, Mosekilde LI (2002) Zone-dependent changes in human vertebral trabecular bone: clinical implications. Bone 30:664–669PubMedCrossRef
33.
go back to reference Banse X, Devogelaer JP, Munting E et al (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28:563–571PubMedCrossRef Banse X, Devogelaer JP, Munting E et al (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28:563–571PubMedCrossRef
34.
go back to reference Sandor TA, Felsenberg D, Kalender WA et al (1991) Global and regional variations in the spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab 72:1157–1168PubMedCrossRef Sandor TA, Felsenberg D, Kalender WA et al (1991) Global and regional variations in the spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab 72:1157–1168PubMedCrossRef
35.
go back to reference Briggs AM, Wark JD, Kantor S et al (2006) Bone mineral density distribution in thoracic and lumbar vertebrae: an ex vivo study using dual energy x-ray absorptiometry. Bone 38:286–288PubMedCrossRef Briggs AM, Wark JD, Kantor S et al (2006) Bone mineral density distribution in thoracic and lumbar vertebrae: an ex vivo study using dual energy x-ray absorptiometry. Bone 38:286–288PubMedCrossRef
36.
go back to reference Pollintine P, Tobias JH, McNally DS et al (2002) Intervertebral disc degeneration increases load-bearing by the neural arch and reduces BMD in the anterior vertebral body. J Bone Miner Res 17:F9 Pollintine P, Tobias JH, McNally DS et al (2002) Intervertebral disc degeneration increases load-bearing by the neural arch and reduces BMD in the anterior vertebral body. J Bone Miner Res 17:F9
37.
go back to reference Sandor T, Felsenberg D, Brown E (1997) Discriminability of fracture and non-fracture cases based on the spatial distribution of spinal bone mineral. J Comp Assist Tomog 21:498–505CrossRef Sandor T, Felsenberg D, Brown E (1997) Discriminability of fracture and non-fracture cases based on the spatial distribution of spinal bone mineral. J Comp Assist Tomog 21:498–505CrossRef
38.
go back to reference Briggs A, Wark J, Phillips B et al (2005) Subregional bone mineral density characteristics in the lumbar spine: an in vivo pilot study using dual energy x-ray absorptiometry. Annual Scientific Meeting of the Australian and New Zealand Bone and Mineral Society, Perth, Australia Briggs A, Wark J, Phillips B et al (2005) Subregional bone mineral density characteristics in the lumbar spine: an in vivo pilot study using dual energy x-ray absorptiometry. Annual Scientific Meeting of the Australian and New Zealand Bone and Mineral Society, Perth, Australia
39.
go back to reference Aaron JE, Shore PA, Shore RC et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture. II. Three-dimensional histology. Bone 27:277–282PubMedCrossRef Aaron JE, Shore PA, Shore RC et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture. II. Three-dimensional histology. Bone 27:277–282PubMedCrossRef
40.
go back to reference Kleerekoper M, Villaneueva AR, Stanciu J et al (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597PubMedCrossRef Kleerekoper M, Villaneueva AR, Stanciu J et al (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597PubMedCrossRef
41.
go back to reference Oleksik A, Ott SM, Vedi S et al (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375PubMedCrossRef Oleksik A, Ott SM, Vedi S et al (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375PubMedCrossRef
42.
go back to reference Qui SJ, Rao DS, Palnitkar S et al (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18:1657–1663CrossRef Qui SJ, Rao DS, Palnitkar S et al (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18:1657–1663CrossRef
43.
go back to reference Bell KL, Loveridge N, Power J et al (1999) Intracapsular hip fracture: increased cortical remodeling in the thinned and porous anterior region of the femoral neck. Osteoporos Int 10:248–257PubMedCrossRef Bell KL, Loveridge N, Power J et al (1999) Intracapsular hip fracture: increased cortical remodeling in the thinned and porous anterior region of the femoral neck. Osteoporos Int 10:248–257PubMedCrossRef
44.
go back to reference Ciarelli TE, Fyhrie DP, Schaffler MB et al (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and controls. J Bone Miner Res 15:32–40PubMedCrossRef Ciarelli TE, Fyhrie DP, Schaffler MB et al (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and controls. J Bone Miner Res 15:32–40PubMedCrossRef
45.
go back to reference Homminga J, McCreadie BR, Ciarelli TE et al (2002) Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structural level, not on the bone hard tissue level. Bone 30:759–764PubMedCrossRef Homminga J, McCreadie BR, Ciarelli TE et al (2002) Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structural level, not on the bone hard tissue level. Bone 30:759–764PubMedCrossRef
47.
go back to reference Qui SJ, Rao DS, Fyhrie DP et al (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37:10–15CrossRef Qui SJ, Rao DS, Fyhrie DP et al (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37:10–15CrossRef
48.
go back to reference Vashishth D, Verborgt O, Divine G et al (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26:375–380PubMedCrossRef Vashishth D, Verborgt O, Divine G et al (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26:375–380PubMedCrossRef
49.
go back to reference Tracy JK, Meyer WA, Grigoryan M et al (2006) Racial differences in the prevalence of vertebral fractures in older men: the Baltimore men’s osteoporosis study. Osteoporos Int 17:99–104PubMedCrossRef Tracy JK, Meyer WA, Grigoryan M et al (2006) Racial differences in the prevalence of vertebral fractures in older men: the Baltimore men’s osteoporosis study. Osteoporos Int 17:99–104PubMedCrossRef
50.
go back to reference Qui SJ, Rao DS, Palnitkar S et al (2006) Differences in osteocyte density between black and white American women. Bone 38:130–135CrossRef Qui SJ, Rao DS, Palnitkar S et al (2006) Differences in osteocyte density between black and white American women. Bone 38:130–135CrossRef
51.
go back to reference Mosekilde L, Mosekilde L (1988) Iliac crest trabecular bone volume as a predictor for vertebral compressive strength, ash density, and trabecular bone volume in normal individuals. Bone 9:195–199PubMedCrossRef Mosekilde L, Mosekilde L (1988) Iliac crest trabecular bone volume as a predictor for vertebral compressive strength, ash density, and trabecular bone volume in normal individuals. Bone 9:195–199PubMedCrossRef
52.
go back to reference Heaney RP, Avioli LV, Chesnut CHI et al (1995) Ultrasound velocity through bone predicts incident vertebral deformity. J Bone Miner Res 10:341–345PubMed Heaney RP, Avioli LV, Chesnut CHI et al (1995) Ultrasound velocity through bone predicts incident vertebral deformity. J Bone Miner Res 10:341–345PubMed
53.
go back to reference Stewart A, Kumar V, Reid DM (2006) Long-term fracture prediction by DXA and QUS: a 10-year prospective study. J Bone Miner Res 21:413–418PubMedCrossRef Stewart A, Kumar V, Reid DM (2006) Long-term fracture prediction by DXA and QUS: a 10-year prospective study. J Bone Miner Res 21:413–418PubMedCrossRef
54.
go back to reference Fiore CE, Pennisi P, Gibilaro M et al (1999) Correlation of quantitative ultrasound of bone with biochemical markers of bone resorption in women with osteoporotic fractures. J Clin Densitom 2:231–239PubMedCrossRef Fiore CE, Pennisi P, Gibilaro M et al (1999) Correlation of quantitative ultrasound of bone with biochemical markers of bone resorption in women with osteoporotic fractures. J Clin Densitom 2:231–239PubMedCrossRef
55.
go back to reference Gonnelli S, Cepollaro C, Agnusdei D et al (1995) Diagnostic value of ultrasound analysis and bone densitometry as predictors of vertebral deformity in postmenopausal women. Osteoporos Int 5:413–418PubMedCrossRef Gonnelli S, Cepollaro C, Agnusdei D et al (1995) Diagnostic value of ultrasound analysis and bone densitometry as predictors of vertebral deformity in postmenopausal women. Osteoporos Int 5:413–418PubMedCrossRef
56.
go back to reference Di Stefano M, Isaia GC (2002) Ability of ultrasound bone profile score (UBPS) to discriminate between fractured and not fractured osteoporotic women. Ultrasound Med Biol 28:1485–1489PubMedCrossRef Di Stefano M, Isaia GC (2002) Ability of ultrasound bone profile score (UBPS) to discriminate between fractured and not fractured osteoporotic women. Ultrasound Med Biol 28:1485–1489PubMedCrossRef
57.
go back to reference Wehrli FW, Hilaire L, Fernandez-Seara M et al (2002) Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 17:2265–2273PubMedCrossRef Wehrli FW, Hilaire L, Fernandez-Seara M et al (2002) Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 17:2265–2273PubMedCrossRef
58.
go back to reference Teo JCM, Si-Hoe KM, Keh JEL et al (2006) Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech 21:235–244CrossRef Teo JCM, Si-Hoe KM, Keh JEL et al (2006) Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech 21:235–244CrossRef
59.
go back to reference Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRef Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRef
60.
go back to reference Black DM, Arden NK, Palermo L et al (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828PubMedCrossRef Black DM, Arden NK, Palermo L et al (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828PubMedCrossRef
61.
go back to reference Chapurlat RD, Bauer DC, Nevitt M et al (2003) Incidence and risk factors for a second hip fracture in elderly women. The study of osteoporotic fractures. Osteoporos Int 14:130–136PubMed Chapurlat RD, Bauer DC, Nevitt M et al (2003) Incidence and risk factors for a second hip fracture in elderly women. The study of osteoporotic fractures. Osteoporos Int 14:130–136PubMed
62.
go back to reference Mazess RB, Barden H, Mautalen C et al (1994) Normalization of spine densitometry. J Bone Miner Res 9:541–548PubMed Mazess RB, Barden H, Mautalen C et al (1994) Normalization of spine densitometry. J Bone Miner Res 9:541–548PubMed
63.
go back to reference Vega E, Ghiringhelli G, Mautalen C et al (1998) Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int 62:465–469PubMedCrossRef Vega E, Ghiringhelli G, Mautalen C et al (1998) Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int 62:465–469PubMedCrossRef
64.
go back to reference Duan YB, Parfitt AM, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802PubMedCrossRef Duan YB, Parfitt AM, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802PubMedCrossRef
65.
go back to reference Gilsanz V, Loro LM, Roe TF et al (1995) Vertebral size in elderly women with osteoporosis: mechanical implications and relationships to fractures. J Clin Invest 95:2332–2337PubMedCrossRef Gilsanz V, Loro LM, Roe TF et al (1995) Vertebral size in elderly women with osteoporosis: mechanical implications and relationships to fractures. J Clin Invest 95:2332–2337PubMedCrossRef
66.
go back to reference Tveit P, Daggfeldt K, Hetland S et al (1994) Erector spinae lever arm length variations with changes in spinal curvature. Spine 19:199–204PubMedCrossRef Tveit P, Daggfeldt K, Hetland S et al (1994) Erector spinae lever arm length variations with changes in spinal curvature. Spine 19:199–204PubMedCrossRef
67.
go back to reference Margulies JY, Payzer A, Nyska M et al (1996) The relationship between degenerative changes and osteoporosis in the lumbar spine. Clin Orthop Relat Res 324:145–152PubMedCrossRef Margulies JY, Payzer A, Nyska M et al (1996) The relationship between degenerative changes and osteoporosis in the lumbar spine. Clin Orthop Relat Res 324:145–152PubMedCrossRef
68.
go back to reference Briggs AM, Wrigley TV, van Dieën JH et al (2006) The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J 15:1785–1795PubMedCrossRef Briggs AM, Wrigley TV, van Dieën JH et al (2006) The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J 15:1785–1795PubMedCrossRef
69.
go back to reference Adams MA, Freeman BJC, Morrison HP et al (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25:1625–1636PubMedCrossRef Adams MA, Freeman BJC, Morrison HP et al (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25:1625–1636PubMedCrossRef
70.
go back to reference Adams MA, McMillan DW, Green TP et al (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 21:434–438PubMedCrossRef Adams MA, McMillan DW, Green TP et al (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 21:434–438PubMedCrossRef
71.
go back to reference Sornay-Rendu E, Munoz F, Duboeuf F et al (2004) Disc space narrowing is associated with increased vertebral fracture risk in postmenopausal women: the OFELY study. J Bone Miner Res 19:1994–1999PubMedCrossRef Sornay-Rendu E, Munoz F, Duboeuf F et al (2004) Disc space narrowing is associated with increased vertebral fracture risk in postmenopausal women: the OFELY study. J Bone Miner Res 19:1994–1999PubMedCrossRef
72.
go back to reference Kurowski P, Kubo A (1986) The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae. Spine 11:726–731PubMedCrossRef Kurowski P, Kubo A (1986) The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae. Spine 11:726–731PubMedCrossRef
73.
go back to reference Pollintine P, Dolan P, Tobias JH et al (2004) Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body—a cause of osteoporotic vertebral fracture? Spine 29:774–782PubMedCrossRef Pollintine P, Dolan P, Tobias JH et al (2004) Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body—a cause of osteoporotic vertebral fracture? Spine 29:774–782PubMedCrossRef
74.
go back to reference McCubbery DA, Cody DD, Peterson EL et al (1995) Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J Biomech 28:891–899CrossRef McCubbery DA, Cody DD, Peterson EL et al (1995) Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J Biomech 28:891–899CrossRef
75.
go back to reference Cortet B, Roches E, Logier G et al (2002) Evaluation of spinal curvatures after a recent osteoporotic vertebral fracture. Joint Bone Spine 69:201–208PubMedCrossRef Cortet B, Roches E, Logier G et al (2002) Evaluation of spinal curvatures after a recent osteoporotic vertebral fracture. Joint Bone Spine 69:201–208PubMedCrossRef
76.
go back to reference Keller TS, Harrison DE, Colloca CJ et al (2003) Prediction of osteoporotic spinal deformity. Spine 28:455–462PubMedCrossRef Keller TS, Harrison DE, Colloca CJ et al (2003) Prediction of osteoporotic spinal deformity. Spine 28:455–462PubMedCrossRef
77.
go back to reference Lombardi I, Oliveira LM, Mayer AF et al (2005) Evaluation of pulmonary function and quality of life in women with osteoporosis. Osteoporos Int 16:1247–1253PubMedCrossRef Lombardi I, Oliveira LM, Mayer AF et al (2005) Evaluation of pulmonary function and quality of life in women with osteoporosis. Osteoporos Int 16:1247–1253PubMedCrossRef
78.
go back to reference De Smet AA, Robinson RG, Johnson BE et al (1988) Spinal compression fractures in osteoporotic women: patterns and relationship to hyperkyphosis. Radiology 166:497–500PubMed De Smet AA, Robinson RG, Johnson BE et al (1988) Spinal compression fractures in osteoporotic women: patterns and relationship to hyperkyphosis. Radiology 166:497–500PubMed
79.
go back to reference Greig AM (2006) Relationships between vertebral fracture, thoracic kyphosis and postural control in individuals with osteoporosis. Doctoral thesis, University of Melbourne Greig AM (2006) Relationships between vertebral fracture, thoracic kyphosis and postural control in individuals with osteoporosis. Doctoral thesis, University of Melbourne
80.
go back to reference Schneider DL, von Muhlen DG, Barrett-Connor E et al (2004) Kyphosis does not equal vertebral fractures: the Rancho Bernardo study. J Rheumatol 31:747–752PubMed Schneider DL, von Muhlen DG, Barrett-Connor E et al (2004) Kyphosis does not equal vertebral fractures: the Rancho Bernardo study. J Rheumatol 31:747–752PubMed
81.
go back to reference Shipp KM, Guess HA, Ensrud KE et al (2002) Thoracic kyphosis and rate of incident vertebral fracture. J Bone Miner Res 17:S174 Shipp KM, Guess HA, Ensrud KE et al (2002) Thoracic kyphosis and rate of incident vertebral fracture. J Bone Miner Res 17:S174
82.
go back to reference Huang MH, Barrett-Connor E, Greendale GA et al (2006) Hyperkyphotic posture and risk of future osteoporotic fractures: the Rancho Bernado study. J Bone Miner Res 21:419–423PubMedCrossRef Huang MH, Barrett-Connor E, Greendale GA et al (2006) Hyperkyphotic posture and risk of future osteoporotic fractures: the Rancho Bernado study. J Bone Miner Res 21:419–423PubMedCrossRef
83.
go back to reference Komemushi A, Tanigawa N, Kariya S et al (2005) Percutaneous vertebroplasty for compression fracture: analysis of vertebral body volume by CT volumetry. Acta Radiol 46:276–279PubMedCrossRef Komemushi A, Tanigawa N, Kariya S et al (2005) Percutaneous vertebroplasty for compression fracture: analysis of vertebral body volume by CT volumetry. Acta Radiol 46:276–279PubMedCrossRef
84.
go back to reference Pradhan B, Bae HW, Kropf MA et al (2006) Kyphoplasty reduction of osteoporotic vertebral compression fractures: correction of local kyphosis versus overall sagittal alignment. Spine 31:435–441PubMedCrossRef Pradhan B, Bae HW, Kropf MA et al (2006) Kyphoplasty reduction of osteoporotic vertebral compression fractures: correction of local kyphosis versus overall sagittal alignment. Spine 31:435–441PubMedCrossRef
85.
go back to reference Garfin SR, Yuan HA, Reiley MA (2001) New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26:1511–1515PubMedCrossRef Garfin SR, Yuan HA, Reiley MA (2001) New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26:1511–1515PubMedCrossRef
86.
go back to reference Fribourg D, Tang C, Delamarter R et al (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29:2270–2276PubMedCrossRef Fribourg D, Tang C, Delamarter R et al (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29:2270–2276PubMedCrossRef
87.
go back to reference Cooper C, Atkinson EJ, O’Fallon WM et al (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227PubMedCrossRef Cooper C, Atkinson EJ, O’Fallon WM et al (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227PubMedCrossRef
88.
go back to reference Lynn SG, Sinaki M, Westerlind KC (1997) Balance characteristics of persons with osteoporosis. Arch Phys Med Rehabil 78:273–277PubMedCrossRef Lynn SG, Sinaki M, Westerlind KC (1997) Balance characteristics of persons with osteoporosis. Arch Phys Med Rehabil 78:273–277PubMedCrossRef
89.
go back to reference Sinaki M, Brey RH, Hughes CA et al (2005) Balance disorder and increased risk of falls in osteoporosis and kyphosis: significance of kyphotic posture and muscle strength. Osteoporos Int 16:1004–1010PubMedCrossRef Sinaki M, Brey RH, Hughes CA et al (2005) Balance disorder and increased risk of falls in osteoporosis and kyphosis: significance of kyphotic posture and muscle strength. Osteoporos Int 16:1004–1010PubMedCrossRef
90.
go back to reference Carpenter MG, Frank JS, Silcher CP et al (2001) The influence of postural threat on the control of upright stance. Exp Brain Res 138:210–218PubMedCrossRef Carpenter MG, Frank JS, Silcher CP et al (2001) The influence of postural threat on the control of upright stance. Exp Brain Res 138:210–218PubMedCrossRef
91.
go back to reference Marras W, Davis KG, Ferguson SA et al (2001) Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine 26:2566–2574PubMedCrossRef Marras W, Davis KG, Ferguson SA et al (2001) Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine 26:2566–2574PubMedCrossRef
92.
go back to reference Horak FB, Nashner LM (1986) Central programming of postural movements: adaptations to altered support-surface configurations. J Neurophysiol 55:1369–1381PubMed Horak FB, Nashner LM (1986) Central programming of postural movements: adaptations to altered support-surface configurations. J Neurophysiol 55:1369–1381PubMed
94.
go back to reference Kopperdahl DL, Pearlman JL, Keaveny TM (2000) Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res 18:685–690PubMedCrossRef Kopperdahl DL, Pearlman JL, Keaveny TM (2000) Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res 18:685–690PubMedCrossRef
95.
go back to reference Hodges PW, Richardson CA (1999) Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil 80:1005–1012PubMedCrossRef Hodges PW, Richardson CA (1999) Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil 80:1005–1012PubMedCrossRef
96.
go back to reference Cook DJ, Guyatt GH, Adachi JD et al (1993) Quality of life issues in women with vertebral fractures due to osteoporosis. Arthritis Rheum 36:750–756PubMedCrossRef Cook DJ, Guyatt GH, Adachi JD et al (1993) Quality of life issues in women with vertebral fractures due to osteoporosis. Arthritis Rheum 36:750–756PubMedCrossRef
97.
go back to reference Balzini L, Vannucchi L, Benvenuti F et al (2003) Clinical characteristics of flexed posture in elderly women. J Amer Geriatr Soc 51:1419–1426PubMedCrossRef Balzini L, Vannucchi L, Benvenuti F et al (2003) Clinical characteristics of flexed posture in elderly women. J Amer Geriatr Soc 51:1419–1426PubMedCrossRef
98.
go back to reference Schleich C, Minne HW, Bruckner T et al (1998) Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 8:261–267CrossRef Schleich C, Minne HW, Bruckner T et al (1998) Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 8:261–267CrossRef
99.
go back to reference Dixon WG, Lunt M, Pye SR et al (2005) Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology 44:642–646PubMedCrossRef Dixon WG, Lunt M, Pye SR et al (2005) Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology 44:642–646PubMedCrossRef
Metadata
Title
The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis
Authors
A. M. Briggs
A. M. Greig
J. D. Wark
Publication date
01-05-2007
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 5/2007
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-006-0304-x

Other articles of this Issue 5/2007

Osteoporosis International 5/2007 Go to the issue