Skip to main content
Top
Published in: Osteoporosis International 5/2003

01-09-2003 | Original Article

Matrix proteins

Author: Caren M. Gundberg

Published in: Osteoporosis International | Special Issue 5/2003

Login to get access

Excerpt

In the last 20 years, researchers have identified a number of matrix proteins and proteoglycans that may play a role in skeletal dynamics. Early studies focused on these proteins as controlling the nucleation or deposition of mineral. Yet many are now thought to be involved in bone remodeling, directly or indirectly, by participating in recruitment and attachment of cells to bone. These proteins can be categorized by their structural properties (Table 1). For the purpose of this discussion, we will limit ourselves to those noncollagenous proteins that have been most extensively studied in regard to bone physiology, and in which the skeletal phenotype has been evaluated in genetically altered mice.
Table 1.
Categories of the major organic constituents of bone (MEPE=matrix extracellular protein)
Proteoglycans
  Large chondroitin sulfate proteoglycans
    Aggrecan, versican
  Small leucine-rich proteoglycans
    Decorin, biglycan, osteoglycan, fibromodulin, osteoadherin
Glycosaminoglycans
    Hyaluronan
Glycoproteins
  Osteonectin
  Growth factors
  Small integrin-binding ligands with N-linked glycosylation (SIBLINGS)
    Osteopontin, bone sialoprotein, dentin sialoprotein, MEPE
Vitamin K-dependent proteins
    Osteocalcin, matrix Gla protein, Gas-6
Serum proteins
    Albumin, fetuin
Literature
1.
go back to reference Xu T, Bianco P, Fisher LW, et al (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82PubMed Xu T, Bianco P, Fisher LW, et al (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82PubMed
2.
go back to reference Chen XD, Shi S, Xu T, Robey PG, Young MF (2002) Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells. J Bone Miner Res 17:331–340PubMed Chen XD, Shi S, Xu T, Robey PG, Young MF (2002) Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells. J Bone Miner Res 17:331–340PubMed
3.
go back to reference Corsi A, Xu T, Chen XD, et al (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17:1180–1189PubMed Corsi A, Xu T, Chen XD, et al (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17:1180–1189PubMed
4.
go back to reference Delany AM, Amling M, Priemel M, et al (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105:915–923PubMed Delany AM, Amling M, Priemel M, et al (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105:915–923PubMed
5.
go back to reference Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061PubMed Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061PubMed
6.
go back to reference Rittling SR, Matsumoto HN, McKee MD, et al (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13:1101–1111PubMed Rittling SR, Matsumoto HN, McKee MD, et al (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13:1101–1111PubMed
7.
go back to reference Yoshitake H, Rittling SR, Denhardt DT, Noda M (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 96:8156–8160CrossRefPubMed Yoshitake H, Rittling SR, Denhardt DT, Noda M (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 96:8156–8160CrossRefPubMed
8.
go back to reference Ihara H, Denhardt DT, Furuya K, et al (2001) Parathyroid hormone-induced bone resorption does not occur in the absence of osteopontin. J Biol Chem 276:13065–13071CrossRefPubMed Ihara H, Denhardt DT, Furuya K, et al (2001) Parathyroid hormone-induced bone resorption does not occur in the absence of osteopontin. J Biol Chem 276:13065–13071CrossRefPubMed
9.
go back to reference Ishijima M, Rittling SR, Yamashita T, et al (2001) Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 193:399–404CrossRefPubMed Ishijima M, Rittling SR, Yamashita T, et al (2001) Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 193:399–404CrossRefPubMed
10.
go back to reference Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10:79–98PubMed Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10:79–98PubMed
11.
go back to reference McKee MD, Nanci A (1996) Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res 35:197–205PubMed McKee MD, Nanci A (1996) Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res 35:197–205PubMed
12.
go back to reference Gowen L, Petersen D, Mansolf A (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007CrossRefPubMed Gowen L, Petersen D, Mansolf A (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007CrossRefPubMed
13.
go back to reference Ducy P, Desbois C, Boyce B, et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452PubMed Ducy P, Desbois C, Boyce B, et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452PubMed
14.
go back to reference Boskey AL, Gadaleta S, Gundberg C, et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196PubMed Boskey AL, Gadaleta S, Gundberg C, et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196PubMed
15.
go back to reference Zebboudj A, Imura M, Bostrom K (2002) Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 277:4388–4390CrossRefPubMed Zebboudj A, Imura M, Bostrom K (2002) Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 277:4388–4390CrossRefPubMed
16.
go back to reference Luo G, Ducy P, McKee MD, et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81 Luo G, Ducy P, McKee MD, et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81
17.
go back to reference Binkert C, Demetriou M, Sukhu B, et al (1999) Regulation of osteogenesis by fetuin. J Biol Chem 274:28514–28520CrossRefPubMed Binkert C, Demetriou M, Sukhu B, et al (1999) Regulation of osteogenesis by fetuin. J Biol Chem 274:28514–28520CrossRefPubMed
18.
go back to reference Szweras M, Liu D, Partridge EA, et al (2002) Alpha 2-HS glycoprotein/fetuin, a transforming growth factor-beta/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J Biol Chem 277:19991–19997CrossRefPubMed Szweras M, Liu D, Partridge EA, et al (2002) Alpha 2-HS glycoprotein/fetuin, a transforming growth factor-beta/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J Biol Chem 277:19991–19997CrossRefPubMed
Metadata
Title
Matrix proteins
Author
Caren M. Gundberg
Publication date
01-09-2003
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue Special Issue 5/2003
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-003-1471-7

Other articles of this Special Issue 5/2003

Osteoporosis International 5/2003 Go to the issue