Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 11/2019

01-11-2019 | KNEE

A more flattened bone tunnel has a positive effect on tendon–bone healing in the early period after ACL reconstruction

Authors: Fengyuan Zhao, Xiaoqing Hu, Jiahao Zhang, Weili Shi, Bo Ren, Hongjie Huang, Yingfang Ao

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 11/2019

Login to get access

Abstract

Purpose

The purpose of this study was to evaluate whether a flattened bone tunnel has a positive effect on the tendon–bone healing (TBH) process in the early period after anterior cruciate ligament (ACL) reconstruction.

Methods

Seventy-two New Zealand White rabbits were randomly allocated into two groups, the flattened tunnel (FT) group and the conventional round tunnel (RT) group. We compared the cross-sectional areas and diameters of the bone tunnels between the two groups through computed tomography (CT) scanning. TBH results between the two groups were assessed by histological analysis, micro-CT scanning and biomechanical tests at 4 weeks, 8 weeks and 12 weeks after operation.

Results

The cross-sectional areas of the bone tunnels between the two groups were almost the same. However, the shape of bone tunnels in the FT group was more flattened. A faster cellular and collagen remoulding process were found in the FT group. Semiquantitative histological analysis of Safranin O staining showed that there was more fibrocartilage formation in the interface region in the FT group (P < 0.05). Sirius Red staining showed that the tissues in the interface areas were more intense in the FT group. Micro-CT scanning showed that more new bone formation could be found in the interface region in the FT group. The biomechanical tests also showed that FT ACL reconstruction will result in a stronger regenerated tendon–bone interface.

Conclusions

Our study found that a flattened bone tunnel accelerated TBH in the early period after ACL reconstruction surgery in a rabbit model, which lays the groundwork for further clinical practice of this ACL reconstruction method.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bunker DL, Ilie V, Ilie V, Nicklin S (2014) Tendon to bone healing and its implications for surgery. Muscles Ligaments Tendons J 4:343–350CrossRef Bunker DL, Ilie V, Ilie V, Nicklin S (2014) Tendon to bone healing and its implications for surgery. Muscles Ligaments Tendons J 4:343–350CrossRef
2.
go back to reference Delaine-Smith RM, Reilly GC (2012) Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2:169–180PubMedPubMedCentral Delaine-Smith RM, Reilly GC (2012) Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2:169–180PubMedPubMedCentral
3.
go back to reference Dong S, Huangfu X, Xie G, Zhang Y, Shen P, Li X et al (2015) Decellularized versus fresh-frozen allografts in anterior cruciate ligament reconstruction: an in vitro study in a rabbit model. Am J Sports Med 43:1924–1934CrossRef Dong S, Huangfu X, Xie G, Zhang Y, Shen P, Li X et al (2015) Decellularized versus fresh-frozen allografts in anterior cruciate ligament reconstruction: an in vitro study in a rabbit model. Am J Sports Med 43:1924–1934CrossRef
4.
go back to reference Fink C, Lawton R, Forschner F, Gfoller P, Herbort M, Hoser C (2018) Minimally invasive quadriceps tendon single-bundle, arthroscopic, anatomic anterior cruciate ligament reconstruction with rectangular bone tunnels. Arthrosc Tech 7:e1045–e1056CrossRef Fink C, Lawton R, Forschner F, Gfoller P, Herbort M, Hoser C (2018) Minimally invasive quadriceps tendon single-bundle, arthroscopic, anatomic anterior cruciate ligament reconstruction with rectangular bone tunnels. Arthrosc Tech 7:e1045–e1056CrossRef
5.
go back to reference Gali JC, Camargo DB, Oliveira FAM, Pereira RHN, Silva P (2018) Descriptive anatomy of the anterior cruciate ligament femoral insertion. Rev Bras Ortop 53:421–426CrossRef Gali JC, Camargo DB, Oliveira FAM, Pereira RHN, Silva P (2018) Descriptive anatomy of the anterior cruciate ligament femoral insertion. Rev Bras Ortop 53:421–426CrossRef
6.
go back to reference Herbort M, Tecklenburg K, Zantop T, Raschke MJ, Hoser C, Schulze M et al (2013) Single-bundle anterior cruciate ligament reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone–patellar tendon–bone graft configuration versus a round hamstring graft. Arthroscopy 29:1981–1990CrossRef Herbort M, Tecklenburg K, Zantop T, Raschke MJ, Hoser C, Schulze M et al (2013) Single-bundle anterior cruciate ligament reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone–patellar tendon–bone graft configuration versus a round hamstring graft. Arthroscopy 29:1981–1990CrossRef
7.
go back to reference Hiramatsu K, Mae T, Tachibana Y, Nakagawa S, Shino K (2018) Contact area between femoral tunnel and interference screw in anatomic rectangular tunnel ACL reconstruction: a comparison of outside-in and trans-portal inside-out techniques. Knee Surg Sports Traumatol Arthrosc 26:519–525CrossRef Hiramatsu K, Mae T, Tachibana Y, Nakagawa S, Shino K (2018) Contact area between femoral tunnel and interference screw in anatomic rectangular tunnel ACL reconstruction: a comparison of outside-in and trans-portal inside-out techniques. Knee Surg Sports Traumatol Arthrosc 26:519–525CrossRef
8.
go back to reference Iwahashi T, Shino K, Nakata K, Otsubo H, Suzuki T, Amano H et al (2010) Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy 26:S13–S20CrossRef Iwahashi T, Shino K, Nakata K, Otsubo H, Suzuki T, Amano H et al (2010) Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy 26:S13–S20CrossRef
9.
go back to reference Kawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA (2005) Macrophages accumulate in the early phase of tendon–bone healing. J Orthop Res 23:1425–1432CrossRef Kawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA (2005) Macrophages accumulate in the early phase of tendon–bone healing. J Orthop Res 23:1425–1432CrossRef
10.
go back to reference Kida Y, Morihara T, Matsuda K, Kajikawa Y, Tachiiri H, Iwata Y et al (2013) Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff. J Shoulder Elbow Surg 22:197–205CrossRef Kida Y, Morihara T, Matsuda K, Kajikawa Y, Tachiiri H, Iwata Y et al (2013) Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff. J Shoulder Elbow Surg 22:197–205CrossRef
11.
go back to reference Kobayashi M, Watanabe N, Oshima Y, Kajikawa Y, Kawata M, Kubo T (2005) The fate of host and graft cells in early healing of bone tunnel after tendon graft. Am J Sports Med 33:1892–1897CrossRef Kobayashi M, Watanabe N, Oshima Y, Kajikawa Y, Kawata M, Kubo T (2005) The fate of host and graft cells in early healing of bone tunnel after tendon graft. Am J Sports Med 33:1892–1897CrossRef
12.
go back to reference L’Insalata JC, Klatt B, Fu FH, Harner CD (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238CrossRef L’Insalata JC, Klatt B, Fu FH, Harner CD (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238CrossRef
13.
go back to reference Li X, Shen P, Su W, Zhao S, Zhao J (2018) Into-tunnel repair versus onto-surface repair for rotator cuff tears in a rabbit model. Am J Sports Med 46:1711–1719CrossRef Li X, Shen P, Su W, Zhao S, Zhao J (2018) Into-tunnel repair versus onto-surface repair for rotator cuff tears in a rabbit model. Am J Sports Med 46:1711–1719CrossRef
14.
go back to reference Liu S, Sun Y, Wan F, Ding Z, Chen S, Chen J (2018) Advantages of an attached semitendinosus tendon graft in anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med 46:3227–3236CrossRef Liu S, Sun Y, Wan F, Ding Z, Chen S, Chen J (2018) Advantages of an attached semitendinosus tendon graft in anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med 46:3227–3236CrossRef
16.
go back to reference Lui P, Zhang P, Chan K, Qin L (2010) Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 5:59CrossRef Lui P, Zhang P, Chan K, Qin L (2010) Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 5:59CrossRef
18.
go back to reference Masuda H, Taketomi S, Inui H, Shimazaki N, Nishihara N, Toyooka S et al (2018) Bone-to-bone integrations were complete within 5 months after anatomical rectangular tunnel anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft. Knee Surg Sports Traumatol Arthrosc 26:3660–3666CrossRef Masuda H, Taketomi S, Inui H, Shimazaki N, Nishihara N, Toyooka S et al (2018) Bone-to-bone integrations were complete within 5 months after anatomical rectangular tunnel anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft. Knee Surg Sports Traumatol Arthrosc 26:3660–3666CrossRef
19.
go back to reference Mochizuki T, Fujishiro H, Nimura A, Mahakkanukrauh P, Yasuda K, Muneta T et al (2014) Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthrosc 22:336–344CrossRef Mochizuki T, Fujishiro H, Nimura A, Mahakkanukrauh P, Yasuda K, Muneta T et al (2014) Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthrosc 22:336–344CrossRef
20.
go back to reference Mutsuzaki H, Sakane M, Hattori S, Kobayashi H, Ochiai N (2009) Firm anchoring between a calcium phosphate-hybridized tendon and bone for anterior cruciate ligament reconstruction in a goat model. Biomed Mater 4:045013CrossRef Mutsuzaki H, Sakane M, Hattori S, Kobayashi H, Ochiai N (2009) Firm anchoring between a calcium phosphate-hybridized tendon and bone for anterior cruciate ligament reconstruction in a goat model. Biomed Mater 4:045013CrossRef
21.
go back to reference Nakase J, Kitaoka K, Matsumoto K, Tomita K (2010) Facilitated tendon-bone healing by local delivery of recombinant hepatocyte growth factor in rabbits. Arthroscopy 26:84–90CrossRef Nakase J, Kitaoka K, Matsumoto K, Tomita K (2010) Facilitated tendon-bone healing by local delivery of recombinant hepatocyte growth factor in rabbits. Arthroscopy 26:84–90CrossRef
22.
go back to reference Nakase J, Toratani T, Kosaka M, Ohashi Y, Numata H, Oshima T et al (2016) Technique of anatomical single bundle ACL reconstruction with rounded rectangle femoral dilator. Knee 23:91–96CrossRef Nakase J, Toratani T, Kosaka M, Ohashi Y, Numata H, Oshima T et al (2016) Technique of anatomical single bundle ACL reconstruction with rounded rectangle femoral dilator. Knee 23:91–96CrossRef
23.
go back to reference Noailles T, Boisrenoult P, Sanchez M, Beaufils P, Pujol N (2017) Torsional appearance of the anterior cruciate ligament explaining “Ribbon” and double-bundle concepts: a cadaver-based study. Arthroscopy 33:1703–1709CrossRef Noailles T, Boisrenoult P, Sanchez M, Beaufils P, Pujol N (2017) Torsional appearance of the anterior cruciate ligament explaining “Ribbon” and double-bundle concepts: a cadaver-based study. Arthroscopy 33:1703–1709CrossRef
24.
go back to reference Oka S, Schuhmacher P, Brehmer A, Traut U, Kirsch J, Siebold R (2016) Histological analysis of the tibial anterior cruciate ligament insertion. Knee Surg Sports Traumatol Arthrosc 24:747–753CrossRef Oka S, Schuhmacher P, Brehmer A, Traut U, Kirsch J, Siebold R (2016) Histological analysis of the tibial anterior cruciate ligament insertion. Knee Surg Sports Traumatol Arthrosc 24:747–753CrossRef
25.
go back to reference Panjabi MM, Yoldas E, Oxland TR, Crisco JJ III (1996) Subfailure injury of the rabbit anterior cruciate ligament. J Orthop Res 14:216–222CrossRef Panjabi MM, Yoldas E, Oxland TR, Crisco JJ III (1996) Subfailure injury of the rabbit anterior cruciate ligament. J Orthop Res 14:216–222CrossRef
26.
go back to reference Petersen W, Forkel P, Achtnich A, Metzlaff S, Zantop T (2013) Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers. Arch Orthop Trauma Surg 133:827–833CrossRef Petersen W, Forkel P, Achtnich A, Metzlaff S, Zantop T (2013) Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers. Arch Orthop Trauma Surg 133:827–833CrossRef
27.
go back to reference Scheffler SU, Maschewski K, Becker R, Asbach P (2018) In-vivo three-dimensional MR imaging of the intact anterior cruciate ligament shows a variable insertion pattern of the femoral and tibial footprints. Knee Surg Sports Traumatol Arthrosc 26:3667–3672CrossRef Scheffler SU, Maschewski K, Becker R, Asbach P (2018) In-vivo three-dimensional MR imaging of the intact anterior cruciate ligament shows a variable insertion pattern of the femoral and tibial footprints. Knee Surg Sports Traumatol Arthrosc 26:3667–3672CrossRef
28.
go back to reference Smigielski R, Zdanowicz U, Drwiega M, Ciszek B, Ciszkowska-Lyson B, Siebold R (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23:3143–3150CrossRef Smigielski R, Zdanowicz U, Drwiega M, Ciszek B, Ciszkowska-Lyson B, Siebold R (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23:3143–3150CrossRef
29.
go back to reference Sohn KM, Lee MJ, Hong H, Yoon YC, Park CD, Wang JH (2017) The bow tie shape of the anterior cruciate ligament as visualized by high-resolution magnetic resonance imaging. Am J Sports Med 45:1881–1887CrossRef Sohn KM, Lee MJ, Hong H, Yoon YC, Park CD, Wang JH (2017) The bow tie shape of the anterior cruciate ligament as visualized by high-resolution magnetic resonance imaging. Am J Sports Med 45:1881–1887CrossRef
30.
go back to reference Song F, Jiang D, Wang T, Wang Y, Chen F, Xu G et al (2017) Mechanical loading improves tendon-bone healing in a rabbit anterior cruciate ligament reconstruction model by promoting proliferation and matrix formation of mesenchymal stem cells and tendon cells. Cell Physiol Biochem 41:875–889CrossRef Song F, Jiang D, Wang T, Wang Y, Chen F, Xu G et al (2017) Mechanical loading improves tendon-bone healing in a rabbit anterior cruciate ligament reconstruction model by promoting proliferation and matrix formation of mesenchymal stem cells and tendon cells. Cell Physiol Biochem 41:875–889CrossRef
31.
go back to reference Suzuki T, Shino K, Otsubo H, Suzuki D, Mae T, Fujimiya M et al (2014) Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone–patellar tendon–bone graft. Arthroscopy 30:1294–1302CrossRef Suzuki T, Shino K, Otsubo H, Suzuki D, Mae T, Fujimiya M et al (2014) Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone–patellar tendon–bone graft. Arthroscopy 30:1294–1302CrossRef
32.
go back to reference Tachibana Y, Mae T, Shino K, Ohori T, Amano H, Yoshikawa H et al (2018) Femoral tunnel enlargement after anatomic anterior cruciate ligament reconstruction: bone-patellar tendon-bone/single rectangular tunnel versus hamstring tendon/double tunnels. J Orthop Sci 23:1011–1018CrossRef Tachibana Y, Mae T, Shino K, Ohori T, Amano H, Yoshikawa H et al (2018) Femoral tunnel enlargement after anatomic anterior cruciate ligament reconstruction: bone-patellar tendon-bone/single rectangular tunnel versus hamstring tendon/double tunnels. J Orthop Sci 23:1011–1018CrossRef
34.
go back to reference Takata Y, Nakase J, Numata H, Oshima T, Tsuchiya H (2016) Computed tomography value and tunnel enlargement of round and rounded rectangular femoral bone tunnel for anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 136:1587–1594CrossRef Takata Y, Nakase J, Numata H, Oshima T, Tsuchiya H (2016) Computed tomography value and tunnel enlargement of round and rounded rectangular femoral bone tunnel for anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 136:1587–1594CrossRef
35.
go back to reference Tashiro Y, Lucidi GA, Gale T, Nagai K, Herbst E, Irrgang JJ et al (2018) Anterior cruciate ligament tibial insertion site is elliptical or triangular shaped in healthy young adults: high-resolution 3-T MRI analysis. Knee Surg Sports Traumatol Arthrosc 26:485–490CrossRef Tashiro Y, Lucidi GA, Gale T, Nagai K, Herbst E, Irrgang JJ et al (2018) Anterior cruciate ligament tibial insertion site is elliptical or triangular shaped in healthy young adults: high-resolution 3-T MRI analysis. Knee Surg Sports Traumatol Arthrosc 26:485–490CrossRef
36.
go back to reference Tomihara T, Ohashi H, Yo H (2007) Comparison of direct and indirect interference screw fixation for tendon graft in rabbits. Knee Surg Sports Traumatol Arthrosc 15:26–30CrossRef Tomihara T, Ohashi H, Yo H (2007) Comparison of direct and indirect interference screw fixation for tendon graft in rabbits. Knee Surg Sports Traumatol Arthrosc 15:26–30CrossRef
37.
go back to reference Triantafyllidi E, Paschos NK, Goussia A, Barkoula NM, Exarchos DA, Matikas TE et al (2013) The shape and the thickness of the anterior cruciate ligament along its length in relation to the posterior cruciate ligament: a cadaveric study. Arthroscopy 29:1963–1973CrossRef Triantafyllidi E, Paschos NK, Goussia A, Barkoula NM, Exarchos DA, Matikas TE et al (2013) The shape and the thickness of the anterior cruciate ligament along its length in relation to the posterior cruciate ligament: a cadaveric study. Arthroscopy 29:1963–1973CrossRef
39.
go back to reference Wang R, Xu B, Xu HG (2017) Up-regulation of TGF-beta promotes tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells through the TGF-beta/MAPK signaling pathway in a New Zealand white rabbit model. Cell Physiol Biochem 41:213–226CrossRef Wang R, Xu B, Xu HG (2017) Up-regulation of TGF-beta promotes tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells through the TGF-beta/MAPK signaling pathway in a New Zealand white rabbit model. Cell Physiol Biochem 41:213–226CrossRef
40.
go back to reference Yamakado K, Kitaoka K, Yamada H, Hashiba K, Nakamura R, Tomita K (2002) The influence of mechanical stress on graft healing in a bone tunnel. Arthroscopy 18:82–90CrossRef Yamakado K, Kitaoka K, Yamada H, Hashiba K, Nakamura R, Tomita K (2002) The influence of mechanical stress on graft healing in a bone tunnel. Arthroscopy 18:82–90CrossRef
41.
go back to reference Zou G, Song E, Wei B (2017) Effects of tendon-bone healing of anterior cruciate ligament reconstruction by osteoprotegerin combined with deproteinized bovine bone. Muscles Ligaments Tendons J 7:256–262CrossRef Zou G, Song E, Wei B (2017) Effects of tendon-bone healing of anterior cruciate ligament reconstruction by osteoprotegerin combined with deproteinized bovine bone. Muscles Ligaments Tendons J 7:256–262CrossRef
Metadata
Title
A more flattened bone tunnel has a positive effect on tendon–bone healing in the early period after ACL reconstruction
Authors
Fengyuan Zhao
Xiaoqing Hu
Jiahao Zhang
Weili Shi
Bo Ren
Hongjie Huang
Yingfang Ao
Publication date
01-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 11/2019
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-019-05420-7

Other articles of this Issue 11/2019

Knee Surgery, Sports Traumatology, Arthroscopy 11/2019 Go to the issue