Skip to main content
Top
Published in: Diabetologia 2/2018

01-02-2018 | Article

Impact of prolonged overfeeding on skeletal muscle mitochondria in healthy individuals

Authors: Frederico G. S. Toledo, Darcy L. Johannsen, Jeffrey D. Covington, Sudip Bajpeyi, Bret Goodpaster, Kevin E. Conley, Eric Ravussin

Published in: Diabetologia | Issue 2/2018

Login to get access

Abstract

Aims/hypotheses

Reduced mitochondrial capacity in skeletal muscle has been observed in obesity and type 2 diabetes. In humans, the aetiology of this abnormality is not well understood but the possibility that it is secondary to the stress of nutrient overload has been suggested. To test this hypothesis, we examined whether sustained overfeeding decreases skeletal muscle mitochondrial content or impairs function.

Methods

Twenty-six healthy volunteers (21 men, 5 women, age 25.3 ± 4.5 years, BMI 25.5 ± 2.4 kg/m2) underwent a supervised protocol consisting of 8 weeks of high-fat overfeeding (40% over baseline energy requirements). Before and after overfeeding, we measured systemic fuel oxidation by indirect calorimetry and performed skeletal muscle biopsies to measure mitochondrial gene expression, content and function in vitro. Mitochondrial function in vivo was measured by 31P NMR spectroscopy.

Results

With overfeeding, volunteers gained 7.7 ± 1.8 kg (% change 9.8 ± 2.3). Overfeeding increased fasting NEFA, LDL-cholesterol and insulin concentrations. Indirect calorimetry showed a shift towards greater reliance on lipid oxidation. In skeletal muscle tissue, overfeeding increased ceramide content, lipid droplet content and perilipin-2 mRNA expression. Phosphorylation of AMP-activated protein kinase was decreased. Overfeeding increased mRNA expression of certain genes coding for mitochondrial proteins (CS, OGDH, CPT1B, UCP3, ANT1). Despite the stress of nutrient overload, mitochondrial content and mitochondrial respiration in muscle did not change after overfeeding. Similarly, overfeeding had no effect on either the emission of reactive oxygen species or on mitochondrial function in vivo.

Conclusions/interpretation

Skeletal muscle mitochondria are significantly resilient to nutrient overload. The lower skeletal muscle mitochondrial oxidative capacity in human obesity is likely to be caused by reasons other than nutrient overload per se.

Trial registration

ClinicalTrials.​gov NCT01672632.
Literature
1.
go back to reference Kelley D, He J, Menshikova E, Ritov V (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes mellitus. Diabetes 51:2944–2950CrossRefPubMed Kelley D, He J, Menshikova E, Ritov V (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes mellitus. Diabetes 51:2944–2950CrossRefPubMed
2.
go back to reference Chomentowski P, Coen PM, Radikova Z, Goodpaster BH, Toledo FG (2011) Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metab 96:494–503CrossRefPubMed Chomentowski P, Coen PM, Radikova Z, Goodpaster BH, Toledo FG (2011) Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metab 96:494–503CrossRefPubMed
3.
go back to reference Toledo FG (2014) Mitochondrial involvement in skeletal muscle insulin resistance. Diabetes 63:59–61CrossRefPubMed Toledo FG (2014) Mitochondrial involvement in skeletal muscle insulin resistance. Diabetes 63:59–61CrossRefPubMed
5.
go back to reference Kelley DE, Goodpaster B, Wing RR, Simoneau JA (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Phys 277:E1130–E1141CrossRef Kelley DE, Goodpaster B, Wing RR, Simoneau JA (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Phys 277:E1130–E1141CrossRef
6.
go back to reference Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671CrossRefPubMedPubMedCentral Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671CrossRefPubMedPubMedCentral
8.
go back to reference DeLany JP, Dube JJ, Standley RA et al (2014) Racial differences in peripheral insulin sensitivity and mitochondrial capacity in the absence of obesity. J Clin Endocrinol Metab 99:4307–4314CrossRefPubMedPubMedCentral DeLany JP, Dube JJ, Standley RA et al (2014) Racial differences in peripheral insulin sensitivity and mitochondrial capacity in the absence of obesity. J Clin Endocrinol Metab 99:4307–4314CrossRefPubMedPubMedCentral
9.
go back to reference Richardson DK, Kashyap S, Bajaj M et al (2005) Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 280:10290–10297CrossRefPubMed Richardson DK, Kashyap S, Bajaj M et al (2005) Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 280:10290–10297CrossRefPubMed
10.
go back to reference Sparks LM, Xie H, Koza RA et al (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926–1933CrossRefPubMed Sparks LM, Xie H, Koza RA et al (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926–1933CrossRefPubMed
11.
go back to reference Hancock CR, Han DH, Chen M et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A 105:7815–7820CrossRefPubMedPubMedCentral Hancock CR, Han DH, Chen M et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A 105:7815–7820CrossRefPubMedPubMedCentral
12.
go back to reference Holloway GP, Gurd BJ, Snook LA, Lally J, Bonen A (2010) Compensatory increases in nuclear PGC1α protein are primarily associated with subsarcolemmal mitochondrial adaptations in ZDF rats. Diabetes 59:819–828CrossRefPubMedPubMedCentral Holloway GP, Gurd BJ, Snook LA, Lally J, Bonen A (2010) Compensatory increases in nuclear PGC1α protein are primarily associated with subsarcolemmal mitochondrial adaptations in ZDF rats. Diabetes 59:819–828CrossRefPubMedPubMedCentral
13.
go back to reference Turner N, Bruce CR, Beale SM et al (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56:2085–2092CrossRefPubMed Turner N, Bruce CR, Beale SM et al (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56:2085–2092CrossRefPubMed
14.
go back to reference Johannsen DL, Tchoukalova Y, Tam CS et al (2014) Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the ʻadipose tissue expandabilityʼ hypothesis. Diabetes Care 37:2789–2797CrossRefPubMedPubMedCentral Johannsen DL, Tchoukalova Y, Tam CS et al (2014) Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the ʻadipose tissue expandabilityʼ hypothesis. Diabetes Care 37:2789–2797CrossRefPubMedPubMedCentral
15.
go back to reference Heilbronn LK, de Jonge L, Frisard MI et al (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295:1539–1548CrossRefPubMedPubMedCentral Heilbronn LK, de Jonge L, Frisard MI et al (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295:1539–1548CrossRefPubMedPubMedCentral
16.
go back to reference Bray GA, Smith SR, de Jonge L et al (2012) Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial. JAMA 307:47–55CrossRefPubMedPubMedCentral Bray GA, Smith SR, de Jonge L et al (2012) Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial. JAMA 307:47–55CrossRefPubMedPubMedCentral
17.
go back to reference Nguyen T, de Jonge L, Smith SR, Bray GA (2003) Chamber for indirect calorimetry with accurate measurement and time discrimination of metabolic plateaus of over 20 min. Med Biol Eng Comput 41:572–578CrossRefPubMed Nguyen T, de Jonge L, Smith SR, Bray GA (2003) Chamber for indirect calorimetry with accurate measurement and time discrimination of metabolic plateaus of over 20 min. Med Biol Eng Comput 41:572–578CrossRefPubMed
18.
go back to reference Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ (2010) Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc 42:2134–2140CrossRefPubMed Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ (2010) Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc 42:2134–2140CrossRefPubMed
19.
go back to reference Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616CrossRefPubMed Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616CrossRefPubMed
20.
go back to reference Obanda DN, Hernandez A, Ribnicky D et al (2012) Bioactives of Artemisia dracunculus L. mitigate the role of ceramides in attenuating insulin signaling in rat skeletal muscle cells. Diabetes 61:597–605CrossRefPubMedPubMedCentral Obanda DN, Hernandez A, Ribnicky D et al (2012) Bioactives of Artemisia dracunculus L. mitigate the role of ceramides in attenuating insulin signaling in rat skeletal muscle cells. Diabetes 61:597–605CrossRefPubMedPubMedCentral
21.
go back to reference Toledo FG, Watkins S, Kelley DE (2006) Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 91:3224–3227CrossRefPubMed Toledo FG, Watkins S, Kelley DE (2006) Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 91:3224–3227CrossRefPubMed
22.
go back to reference Toledo FG, Menshikova EV, Ritov VB et al (2007) Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56:2142–2147CrossRefPubMed Toledo FG, Menshikova EV, Ritov VB et al (2007) Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56:2142–2147CrossRefPubMed
23.
go back to reference Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH (2004) Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Phys Endocrinol Metab 287:E857–E862CrossRef Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH (2004) Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Phys Endocrinol Metab 287:E857–E862CrossRef
24.
go back to reference Bogacka I, Xie H, Bray GA, Smith SR (2005) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399CrossRefPubMed Bogacka I, Xie H, Bray GA, Smith SR (2005) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399CrossRefPubMed
25.
go back to reference Lefort N, Glancy B, Bowen B et al (2010) Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59:2444–2452CrossRefPubMedPubMedCentral Lefort N, Glancy B, Bowen B et al (2010) Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59:2444–2452CrossRefPubMedPubMedCentral
26.
go back to reference Seifert EL, Estey C, Xuan JY, Harper ME (2010) Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 285:5748–5758CrossRefPubMed Seifert EL, Estey C, Xuan JY, Harper ME (2010) Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 285:5748–5758CrossRefPubMed
27.
go back to reference St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790CrossRefPubMed St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790CrossRefPubMed
28.
go back to reference Chappell JB, Perry SV (1954) Biochemical and osmotic properties of skeletal muscle mitochondria. Nature 173:1094–1095CrossRefPubMed Chappell JB, Perry SV (1954) Biochemical and osmotic properties of skeletal muscle mitochondria. Nature 173:1094–1095CrossRefPubMed
29.
go back to reference Seifert EL, Bezaire V, Estey C, Harper ME (2008) Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export. J Biol Chem 283:25124–25131CrossRefPubMed Seifert EL, Bezaire V, Estey C, Harper ME (2008) Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export. J Biol Chem 283:25124–25131CrossRefPubMed
30.
go back to reference Amara CE, Marcinek DJ, Shankland EG, Schenkman KA, Arakaki LS, Conley KE (2008) Mitochondrial function in vivo: spectroscopy provides window on cellular energetics. Methods 46:312–318CrossRefPubMed Amara CE, Marcinek DJ, Shankland EG, Schenkman KA, Arakaki LS, Conley KE (2008) Mitochondrial function in vivo: spectroscopy provides window on cellular energetics. Methods 46:312–318CrossRefPubMed
31.
go back to reference Jubrias SA, Esselman PC, Price LB, Cress ME, Conley KE (2001) Large energetic adaptations of elderly muscle to resistance and endurance training. J Appl Physiol 90:1663–1670CrossRefPubMed Jubrias SA, Esselman PC, Price LB, Cress ME, Conley KE (2001) Large energetic adaptations of elderly muscle to resistance and endurance training. J Appl Physiol 90:1663–1670CrossRefPubMed
32.
go back to reference Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE (2003) Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol 553:589–599CrossRefPubMedPubMedCentral Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE (2003) Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol 553:589–599CrossRefPubMedPubMedCentral
34.
35.
go back to reference Blei ML, Conley KE, Odderson IB, Esselman PC, Kushmerick MJ (1993) Individual variation in contractile cost and recovery in a human skeletal muscle. Proc Natl Acad Sci U S A 90:7396–7400CrossRefPubMedPubMedCentral Blei ML, Conley KE, Odderson IB, Esselman PC, Kushmerick MJ (1993) Individual variation in contractile cost and recovery in a human skeletal muscle. Proc Natl Acad Sci U S A 90:7396–7400CrossRefPubMedPubMedCentral
36.
go back to reference Kogot-Levin A, Saada A (2014) Ceramide and the mitochondrial respiratory chain. Biochimie 100:88–94CrossRefPubMed Kogot-Levin A, Saada A (2014) Ceramide and the mitochondrial respiratory chain. Biochimie 100:88–94CrossRefPubMed
37.
go back to reference Yu J, Novgorodov SA, Chudakova D et al (2007) JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J Biol Chem 282:25940–25949CrossRefPubMed Yu J, Novgorodov SA, Chudakova D et al (2007) JNK3 signaling pathway activates ceramide synthase leading to mitochondrial dysfunction. J Biol Chem 282:25940–25949CrossRefPubMed
38.
go back to reference Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE (1999) Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J 13:2051–2060PubMed Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE (1999) Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J 13:2051–2060PubMed
39.
go back to reference Toledo FG, Menshikova EV, Azuma K et al (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 57:987–994CrossRefPubMed Toledo FG, Menshikova EV, Azuma K et al (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 57:987–994CrossRefPubMed
40.
go back to reference Coen PM, Menshikova EV, Distefano G et al (2015) Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes 64:3737–3750CrossRefPubMedPubMedCentral Coen PM, Menshikova EV, Distefano G et al (2015) Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes 64:3737–3750CrossRefPubMedPubMedCentral
41.
go back to reference Berggren JR, Boyle KE, Chapman WH, Houmard JA (2008) Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Phys Endocrinol Metab 294:E726–E732CrossRef Berggren JR, Boyle KE, Chapman WH, Houmard JA (2008) Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Phys Endocrinol Metab 294:E726–E732CrossRef
42.
go back to reference Samocha-Bonet D, Campbell LV, Mori TA et al (2012) Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans. PLoS One 7:e36320CrossRefPubMedPubMedCentral Samocha-Bonet D, Campbell LV, Mori TA et al (2012) Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans. PLoS One 7:e36320CrossRefPubMedPubMedCentral
43.
go back to reference Larsen S, Nielsen J, Hansen CN et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360CrossRefPubMedPubMedCentral Larsen S, Nielsen J, Hansen CN et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360CrossRefPubMedPubMedCentral
44.
go back to reference Dirks ML, Wall BT, van de Valk B et al (2016) One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes 65:2862–2875CrossRefPubMed Dirks ML, Wall BT, van de Valk B et al (2016) One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes 65:2862–2875CrossRefPubMed
45.
go back to reference Gram M, Vigelsø A, Yokota T et al (2014) Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp Gerontol 58:269–278CrossRefPubMed Gram M, Vigelsø A, Yokota T et al (2014) Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp Gerontol 58:269–278CrossRefPubMed
Metadata
Title
Impact of prolonged overfeeding on skeletal muscle mitochondria in healthy individuals
Authors
Frederico G. S. Toledo
Darcy L. Johannsen
Jeffrey D. Covington
Sudip Bajpeyi
Bret Goodpaster
Kevin E. Conley
Eric Ravussin
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 2/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4496-8

Other articles of this Issue 2/2018

Diabetologia 2/2018 Go to the issue

Up Front

Up front

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.