Skip to main content
Top
Published in: Diabetologia 10/2015

01-10-2015 | Article

FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice

Authors: Kerstin Stemmer, Fabio Zani, Kirk M. Habegger, Christina Neff, Petra Kotzbeck, Michaela Bauer, Suma Yalamanchilli, Ali Azad, Maarit Lehti, Paulo J. F. Martins, Timo D. Müller, Paul T. Pfluger, Randy J. Seeley

Published in: Diabetologia | Issue 10/2015

Login to get access

Abstract

Aims/hypothesis

Ketogenic diets (KDs) have increasingly gained attention as effective means for weight loss and potential adjunctive treatment of cancer. The metabolic benefits of KDs are regularly ascribed to enhanced hepatic secretion of fibroblast growth factor 21 (FGF21) and its systemic effects on fatty-acid oxidation, energy expenditure (EE) and body weight. Ambiguous data from Fgf21-knockout animal strains and low FGF21 concentrations reported in humans with ketosis have nevertheless cast doubt regarding the endogenous function of FGF21. We here aimed to elucidate the causal role of FGF21 in mediating the therapeutic benefits of KDs on metabolism and cancer.

Methods

We established a dietary model of increased vs decreased FGF21 by feeding C57BL/6J mice with KDs, either depleted of protein or enriched with protein. We furthermore used wild-type and Fgf21-knockout mice that were subjected to the respective diets, and monitored energy and glucose homeostasis as well as tumour growth after transplantation of Lewis lung carcinoma cells.

Results

Hepatic and circulating, but not adipose tissue, FGF21 levels were profoundly increased by protein starvation, independent of the state of ketosis. We demonstrate that endogenous FGF21 is not essential for the maintenance of normoglycaemia upon protein and carbohydrate starvation and is therefore not needed for the effects of KDs on EE. Furthermore, the tumour-suppressing effects of KDs were independent of FGF21 and, rather, driven by concomitant protein and carbohydrate starvation.

Conclusions/interpretation

Our data indicate that the multiple systemic effects of KD exposure in mice, previously ascribed to increased FGF21 secretion, are rather a consequence of protein malnutrition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA (2003) A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab 88:1617–1623CrossRefPubMed Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA (2003) A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab 88:1617–1623CrossRefPubMed
2.
go back to reference Foster GD, Wyatt HR, Hill JO et al (2003) A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 348:2082–2090CrossRefPubMed Foster GD, Wyatt HR, Hill JO et al (2003) A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 348:2082–2090CrossRefPubMed
3.
go back to reference Dashti HM, Mathew TC, Khadada M et al (2007) Beneficial effects of ketogenic diet in obese diabetic subjects. Mol Cell Biochem 302:249–256CrossRefPubMed Dashti HM, Mathew TC, Khadada M et al (2007) Beneficial effects of ketogenic diet in obese diabetic subjects. Mol Cell Biochem 302:249–256CrossRefPubMed
4.
go back to reference Acheson KJ (2010) Carbohydrate for weight and metabolic control: where do we stand? Nutrition 26:141–145CrossRefPubMed Acheson KJ (2010) Carbohydrate for weight and metabolic control: where do we stand? Nutrition 26:141–145CrossRefPubMed
5.
go back to reference Kessler SK, Neal EG, Camfield CS, Kossoff EH (2011) Dietary therapies for epilepsy: future research. Epilepsy Behav 22:17–22CrossRefPubMed Kessler SK, Neal EG, Camfield CS, Kossoff EH (2011) Dietary therapies for epilepsy: future research. Epilepsy Behav 22:17–22CrossRefPubMed
7.
go back to reference Nebeling LC, Miraldi F, Shurin SB, Lerner E (1995) Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 14:202–208CrossRefPubMed Nebeling LC, Miraldi F, Shurin SB, Lerner E (1995) Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 14:202–208CrossRefPubMed
8.
go back to reference Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P (2003) Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 89:1375–1382PubMedCentralCrossRefPubMed Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P (2003) Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 89:1375–1382PubMedCentralCrossRefPubMed
9.
go back to reference Seyfried TN, Kiebish MA, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P (1807) Metabolic management of brain cancer. Biochim Biophys Acta 2011:577–594 Seyfried TN, Kiebish MA, Marsh J, Shelton LM, Huysentruyt LC, Mukherjee P (1807) Metabolic management of brain cancer. Biochim Biophys Acta 2011:577–594
10.
go back to reference Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437CrossRefPubMed Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437CrossRefPubMed
11.
go back to reference Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425CrossRefPubMed Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425CrossRefPubMed
12.
go back to reference Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E (2009) Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150:4931–4940PubMedCentralCrossRefPubMed Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E (2009) Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150:4931–4940PubMedCentralCrossRefPubMed
13.
go back to reference Potthoff MJ, Inagaki T, Satapati S et al (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106:10853–10858PubMedCentralCrossRefPubMed Potthoff MJ, Inagaki T, Satapati S et al (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106:10853–10858PubMedCentralCrossRefPubMed
14.
go back to reference Dutchak PA, Katafuchi T, Bookout AL et al (2012) Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148:556–567PubMedCentralCrossRefPubMed Dutchak PA, Katafuchi T, Bookout AL et al (2012) Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148:556–567PubMedCentralCrossRefPubMed
15.
go back to reference Hotta Y, Nakamura H, Konishi M et al (2009) Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150:4625–4633CrossRefPubMed Hotta Y, Nakamura H, Konishi M et al (2009) Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150:4625–4633CrossRefPubMed
16.
go back to reference Adams AC, Coskun T, Cheng CC, O’Farrell LS, Dubois SL, Kharitonenkov A (2013) Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol Metab 2:205–214PubMedCentralCrossRefPubMed Adams AC, Coskun T, Cheng CC, O’Farrell LS, Dubois SL, Kharitonenkov A (2013) Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol Metab 2:205–214PubMedCentralCrossRefPubMed
17.
go back to reference Galman C, Lundasen T, Kharitonenkov A et al (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 8:169–174CrossRefPubMed Galman C, Lundasen T, Kharitonenkov A et al (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 8:169–174CrossRefPubMed
18.
go back to reference Christodoulides C, Dyson P, Sprecher D, Tsintzas K, Karpe F (2009) Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab 94:3594–3601CrossRefPubMed Christodoulides C, Dyson P, Sprecher D, Tsintzas K, Karpe F (2009) Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab 94:3594–3601CrossRefPubMed
19.
go back to reference Dushay J, Chui PC, Gopalakrishnan GS et al (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:456–463CrossRefPubMed Dushay J, Chui PC, Gopalakrishnan GS et al (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:456–463CrossRefPubMed
20.
go back to reference Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027CrossRefPubMed Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027CrossRefPubMed
21.
go back to reference Muller TD, Sullivan LM, Habegger K et al (2012) Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J Pept Sci 18:383–393CrossRefPubMed Muller TD, Sullivan LM, Habegger K et al (2012) Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J Pept Sci 18:383–393CrossRefPubMed
22.
go back to reference Kharitonenkov A, Beals JM, Micanovic R et al (2013) Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One 8:e58575PubMedCentralCrossRefPubMed Kharitonenkov A, Beals JM, Micanovic R et al (2013) Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One 8:e58575PubMedCentralCrossRefPubMed
23.
go back to reference Adams AC, Halstead CA, Hansen BC et al (2013) LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS One 8:e65763PubMedCentralCrossRefPubMed Adams AC, Halstead CA, Hansen BC et al (2013) LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS One 8:e65763PubMedCentralCrossRefPubMed
24.
go back to reference Gimeno RE, Moller DE (2014) FGF21-based pharmacotherapy—potential utility for metabolic disorders. Trends Endocrinol Metab 25:303–311CrossRefPubMed Gimeno RE, Moller DE (2014) FGF21-based pharmacotherapy—potential utility for metabolic disorders. Trends Endocrinol Metab 25:303–311CrossRefPubMed
26.
go back to reference Bielohuby M, Menhofer D, Kirchner H et al (2011) Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. Am J Physiol Endocrinol Metab 300:E65–E76CrossRefPubMed Bielohuby M, Menhofer D, Kirchner H et al (2011) Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. Am J Physiol Endocrinol Metab 300:E65–E76CrossRefPubMed
27.
go back to reference Jornayvaz FR, Jurczak MJ, Lee HY et al (2010) A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am J Physiol Endocrinol Metab 299:E808–E815PubMedCentralCrossRefPubMed Jornayvaz FR, Jurczak MJ, Lee HY et al (2010) A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am J Physiol Endocrinol Metab 299:E808–E815PubMedCentralCrossRefPubMed
28.
go back to reference Kennedy AR, Pissios P, Otu H et al (2007) A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab 292:E1724–E1739CrossRefPubMed Kennedy AR, Pissios P, Otu H et al (2007) A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab 292:E1724–E1739CrossRefPubMed
29.
go back to reference Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492:203–206CrossRefPubMed Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492:203–206CrossRefPubMed
30.
go back to reference Stemmer K, Kotzbeck P, Zani F et al (2015) Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int J Obes (Lond) 39:791–797CrossRef Stemmer K, Kotzbeck P, Zani F et al (2015) Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int J Obes (Lond) 39:791–797CrossRef
31.
go back to reference Wiese TJ, Lambeth DO, Ray PD (1991) The intracellular distribution and activities of phosphoenolpyruvate carboxykinase isozymes in various tissues of several mammals and birds. Comp Biochem Physiol B 100:297–302CrossRefPubMed Wiese TJ, Lambeth DO, Ray PD (1991) The intracellular distribution and activities of phosphoenolpyruvate carboxykinase isozymes in various tissues of several mammals and birds. Comp Biochem Physiol B 100:297–302CrossRefPubMed
32.
go back to reference Stark R, Pasquel F, Turcu A et al (2009) Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. J Biol Chem 284:26578–26590PubMedCentralCrossRefPubMed Stark R, Pasquel F, Turcu A et al (2009) Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. J Biol Chem 284:26578–26590PubMedCentralCrossRefPubMed
33.
go back to reference Stemmer K, Bielohuby M, Grayson BE et al (2013) Roux-en-Y gastric bypass surgery but not vertical sleeve gastrectomy decreases bone mass in male rats. Endocrinology 154:2015–2024CrossRefPubMed Stemmer K, Bielohuby M, Grayson BE et al (2013) Roux-en-Y gastric bypass surgery but not vertical sleeve gastrectomy decreases bone mass in male rats. Endocrinology 154:2015–2024CrossRefPubMed
35.
go back to reference Lecker SH, Jagoe RT, Gilbert A et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51CrossRefPubMed Lecker SH, Jagoe RT, Gilbert A et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51CrossRefPubMed
36.
go back to reference Yoon JC, Puigserver P, Chen G et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138CrossRefPubMed Yoon JC, Puigserver P, Chen G et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138CrossRefPubMed
37.
go back to reference De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443:165–171CrossRefPubMed De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443:165–171CrossRefPubMed
38.
go back to reference Pissios P, Hong S, Kennedy AR, Prasad D, Liu FF, Maratos-Flier E (2013) Methionine and choline regulate the metabolic phenotype of a ketogenic diet. Mol Metab 2:306–313PubMedCentralCrossRefPubMed Pissios P, Hong S, Kennedy AR, Prasad D, Liu FF, Maratos-Flier E (2013) Methionine and choline regulate the metabolic phenotype of a ketogenic diet. Mol Metab 2:306–313PubMedCentralCrossRefPubMed
40.
go back to reference Sarruf DA, Thaler JP, Morton GJ et al (2010) Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59:1817–1824PubMedCentralCrossRefPubMed Sarruf DA, Thaler JP, Morton GJ et al (2010) Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59:1817–1824PubMedCentralCrossRefPubMed
41.
go back to reference Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259PubMedCentralCrossRefPubMed Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259PubMedCentralCrossRefPubMed
42.
go back to reference Owen BM, Ding X, Morgan DA et al (2014) FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 20:670–677CrossRefPubMed Owen BM, Ding X, Morgan DA et al (2014) FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 20:670–677CrossRefPubMed
43.
go back to reference Fisher FM, Estall JL, Adams AC et al (2011) Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152:2996–3004PubMedCentralCrossRefPubMed Fisher FM, Estall JL, Adams AC et al (2011) Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152:2996–3004PubMedCentralCrossRefPubMed
45.
go back to reference Kong LJ, Feng W, Wright M et al (2013) FGF21 suppresses hepatic glucose production through the activation of atypical protein kinase Ciota/lambda. Eur J Pharmacol 702:302–308CrossRefPubMed Kong LJ, Feng W, Wright M et al (2013) FGF21 suppresses hepatic glucose production through the activation of atypical protein kinase Ciota/lambda. Eur J Pharmacol 702:302–308CrossRefPubMed
46.
go back to reference Murata Y, Nishio K, Mochiyama T et al (2013) Fgf21 impairs adipocyte insulin sensitivity in mice fed a low-carbohydrate, high-fat ketogenic diet. PLoS One 8:e69330PubMedCentralCrossRefPubMed Murata Y, Nishio K, Mochiyama T et al (2013) Fgf21 impairs adipocyte insulin sensitivity in mice fed a low-carbohydrate, high-fat ketogenic diet. PLoS One 8:e69330PubMedCentralCrossRefPubMed
Metadata
Title
FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice
Authors
Kerstin Stemmer
Fabio Zani
Kirk M. Habegger
Christina Neff
Petra Kotzbeck
Michaela Bauer
Suma Yalamanchilli
Ali Azad
Maarit Lehti
Paulo J. F. Martins
Timo D. Müller
Paul T. Pfluger
Randy J. Seeley
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 10/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3668-7

Other articles of this Issue 10/2015

Diabetologia 10/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.