Skip to main content
Top
Published in: Diabetologia 6/2014

01-06-2014 | Article

Cardiac autonomic neuropathy predicts renal function decline in patients with type 2 diabetes: a cohort study

Authors: Abd A. Tahrani, Kiran Dubb, Neil T. Raymond, Safia Begum, Quratul A. Altaf, Hamed Sadiqi, Milan K. Piya, Martin J. Stevens

Published in: Diabetologia | Issue 6/2014

Login to get access

Abstract

Aims/hypothesis

The aim of this work was to assess the impact of cardiac autonomic neuropathy (CAN) on the development and progression of chronic kidney disease (CKD) in patients with type 2 diabetes.

Methods

We conducted a cohort study in adults with type 2 diabetes. Patients with end-stage renal disease were excluded. CKD was defined as the presence of albuminuria (albumin/creatinine ratio GFR > 3.4 mg/mmol) or an estimated (eGFR) < 60 ml min−1 1.73 m−2. CKD progression was based on repeated eGFR measurements and/or the development of albuminuria. CAN was assessed using heart rate variability.

Results

Two hundred and four patients were included in the analysis. At baseline, the prevalence of CKD and CAN was 40% and 42%, respectively. Patients with CAN had lower eGFR and higher prevalence of albuminuria and CKD. Spectral analysis variables were independently associated with eGFR, albuminuria and CKD at baseline. After a follow-up of 2.5 years, eGFR declined to a greater extent in patients with CAN than in those without CAN (−9.0 ± 17.8% vs −3.3 ± 10.3%, p = 0.009). After adjustment for baseline eGFR and baseline differences, CAN remained an independent predictor of eGFR decline over the follow-up period (β = −3.5, p = 0.03). Spectral analysis variables were also independent predictors of eGFR decline.

Conclusions/interpretation

CAN was independently associated with CKD, albuminuria and eGFR in patients with type 2 diabetes. In addition, CAN was an independent predictor of the decline in eGFR over the follow-up period. CAN could be used to identify patients with type 2 diabetes who are at increased risk of rapid decline in eGFR, so that preventative therapies might be intensified.
Appendix
Available only for authorised users
Literature
1.
go back to reference Leiter LA (2005) The prevention of diabetic microvascular complications of diabetes: is there a role for lipid lowering? Diabetes Res Clin Pract 68:S3–S14PubMedCrossRef Leiter LA (2005) The prevention of diabetic microvascular complications of diabetes: is there a role for lipid lowering? Diabetes Res Clin Pract 68:S3–S14PubMedCrossRef
2.
go back to reference Bakris GL (2011) Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus. Mayo Clin Proc 86:444–456PubMedCentralPubMedCrossRef Bakris GL (2011) Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus. Mayo Clin Proc 86:444–456PubMedCentralPubMedCrossRef
3.
go back to reference Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract End Metab 4:444–452CrossRef Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract End Metab 4:444–452CrossRef
4.
go back to reference Afghahi H, Cederholm J, Eliasson B et al (2011) Risk factors for the development of albuminuria and renal impairment in type 2 diabetes—the Swedish National Diabetes Register (NDR). Nephrol Dial Transplant 26:1236–1243PubMedCrossRef Afghahi H, Cederholm J, Eliasson B et al (2011) Risk factors for the development of albuminuria and renal impairment in type 2 diabetes—the Swedish National Diabetes Register (NDR). Nephrol Dial Transplant 26:1236–1243PubMedCrossRef
5.
go back to reference Low PA, Benrud-Larson LM, Sletten DM et al (2004) Autonomic symptoms and diabetic neuropathy: a population-based study. Diabetes Care 27:2942–2947PubMedCrossRef Low PA, Benrud-Larson LM, Sletten DM et al (2004) Autonomic symptoms and diabetic neuropathy: a population-based study. Diabetes Care 27:2942–2947PubMedCrossRef
6.
go back to reference Gæde P, Vedel P, Larsen N, Jensen GVH, Parving HH, Pedersen O (2003) Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348:383–393PubMedCrossRef Gæde P, Vedel P, Larsen N, Jensen GVH, Parving HH, Pedersen O (2003) Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348:383–393PubMedCrossRef
7.
go back to reference Ziegler D, Mayer P, Mühlen H, Gries FA (1991) The natural history of somatosensory and autonomic nerve dysfunction in relation to glycaemic control during the first 5 years after diagnosis of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 34:822–829PubMedCrossRef Ziegler D, Mayer P, Mühlen H, Gries FA (1991) The natural history of somatosensory and autonomic nerve dysfunction in relation to glycaemic control during the first 5 years after diagnosis of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 34:822–829PubMedCrossRef
8.
go back to reference Valensi P, Pariès J, Attali JR (2003) Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications the French multicenter study. Metabolism 52:815–820PubMedCrossRef Valensi P, Pariès J, Attali JR (2003) Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications the French multicenter study. Metabolism 52:815–820PubMedCrossRef
9.
go back to reference Joles JA, Koomans HA (2004) Causes and consequences of increased sympathetic activity in renal disease. Hypertension 43:699–706PubMedCrossRef Joles JA, Koomans HA (2004) Causes and consequences of increased sympathetic activity in renal disease. Hypertension 43:699–706PubMedCrossRef
10.
go back to reference Kuehl M, Stevens MJ (2012) Cardiovascular autonomic neuropathies as complications of diabetes mellitus. Nat Rev Endocrinol 8:405–416PubMedCrossRef Kuehl M, Stevens MJ (2012) Cardiovascular autonomic neuropathies as complications of diabetes mellitus. Nat Rev Endocrinol 8:405–416PubMedCrossRef
11.
go back to reference Maser RE, Lenhard MJ (2005) Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab 90:5896–5903PubMedCrossRef Maser RE, Lenhard MJ (2005) Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab 90:5896–5903PubMedCrossRef
12.
go back to reference Spallone V, Gambardella S, Maiello MR, Barini A, Frontoni S, Menzinger G (1994) Relationship between autonomic neuropathy, 24-h blood pressure profile, and nephropathy in normotensive IDDM patients. Diabetes Care 17:578–584PubMedCrossRef Spallone V, Gambardella S, Maiello MR, Barini A, Frontoni S, Menzinger G (1994) Relationship between autonomic neuropathy, 24-h blood pressure profile, and nephropathy in normotensive IDDM patients. Diabetes Care 17:578–584PubMedCrossRef
13.
go back to reference Sundkvist G, Lilja B (1993) Autonomic neuropathy predicts deterioration in glomerular filtration rate in patients with IDDM. Diabetes Care 16:773–779PubMedCrossRef Sundkvist G, Lilja B (1993) Autonomic neuropathy predicts deterioration in glomerular filtration rate in patients with IDDM. Diabetes Care 16:773–779PubMedCrossRef
14.
go back to reference Kempler P, Amarenco G, Freeman R et al (2011) Management strategies for gastrointestinal, erectile, bladder, and sudomotor dysfunction in patients with diabetes. Diabetes Metab Res Rev 27:665–677CrossRef Kempler P, Amarenco G, Freeman R et al (2011) Management strategies for gastrointestinal, erectile, bladder, and sudomotor dysfunction in patients with diabetes. Diabetes Metab Res Rev 27:665–677CrossRef
15.
go back to reference Salman IM, Ameer OZ, Sattar MA et al (2011) Renal sympathetic nervous system hyperactivity in early streptozotocin-induced diabetic kidney disease. Neurourol Urodyn 30:438–446PubMedCrossRef Salman IM, Ameer OZ, Sattar MA et al (2011) Renal sympathetic nervous system hyperactivity in early streptozotocin-induced diabetic kidney disease. Neurourol Urodyn 30:438–446PubMedCrossRef
16.
go back to reference Luippold G, Beilharz M, Mühlbauer B (2004) Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrol Dial Transplant 19:342–347PubMedCrossRef Luippold G, Beilharz M, Mühlbauer B (2004) Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrol Dial Transplant 19:342–347PubMedCrossRef
17.
go back to reference Pop-Busui R, Kirkwood I, Schmid H et al (2004) Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 44:2368–2374PubMedCrossRef Pop-Busui R, Kirkwood I, Schmid H et al (2004) Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 44:2368–2374PubMedCrossRef
18.
go back to reference Moran A, Palmas W, Field L et al (2004) Cardiovascular autonomic neuropathy is associated with microalbuminuria in older patients with type 2 diabetes. Diabetes Care 27:972–977PubMedCrossRef Moran A, Palmas W, Field L et al (2004) Cardiovascular autonomic neuropathy is associated with microalbuminuria in older patients with type 2 diabetes. Diabetes Care 27:972–977PubMedCrossRef
19.
go back to reference Sterner NG, Nilsson H, Rošen U, Lilja B, Sundkvist G (1997) Relationships among glomerular filtration rate, albuminuria, and autonomic nerve function in insulin-dependent and non-insulin-dependent diabetes mellitus. J Diabetes Complicat 11:188–193PubMedCrossRef Sterner NG, Nilsson H, Rošen U, Lilja B, Sundkvist G (1997) Relationships among glomerular filtration rate, albuminuria, and autonomic nerve function in insulin-dependent and non-insulin-dependent diabetes mellitus. J Diabetes Complicat 11:188–193PubMedCrossRef
20.
go back to reference Smulders YM, Jager A, Gerritsen J et al (2000) Cardiovascular autonomic function is associated with (micro-)albuminuria in elderly Caucasian subjects with impaired glucose tolerance or type 2 diabetes: the Hoorn Study. Diabetes Care 23:1369–1374PubMedCrossRef Smulders YM, Jager A, Gerritsen J et al (2000) Cardiovascular autonomic function is associated with (micro-)albuminuria in elderly Caucasian subjects with impaired glucose tolerance or type 2 diabetes: the Hoorn Study. Diabetes Care 23:1369–1374PubMedCrossRef
21.
go back to reference Duvnjak L, Vuckoviç S, Car N, Metelko Ž (2001) Relationship between autonomic function, 24-h blood pressure, and albuminuria in normotensive, normoalbuminuric patients with type 1 diabetes. J Diabetes Complicat 15:314–319PubMedCrossRef Duvnjak L, Vuckoviç S, Car N, Metelko Ž (2001) Relationship between autonomic function, 24-h blood pressure, and albuminuria in normotensive, normoalbuminuric patients with type 1 diabetes. J Diabetes Complicat 15:314–319PubMedCrossRef
22.
go back to reference Lafferty AR, Werther GA, Clarke CF (2000) Ambulatory blood pressure, microalbuminuria, and autonomic neuropathy in adolescents with type 1 diabetes. Diabetes Care 23:533–538PubMedCrossRef Lafferty AR, Werther GA, Clarke CF (2000) Ambulatory blood pressure, microalbuminuria, and autonomic neuropathy in adolescents with type 1 diabetes. Diabetes Care 23:533–538PubMedCrossRef
23.
go back to reference Poulsen PL, Ebbehøj E, Hansen KW, Mogensen CE (1997) 24-h blood pressure and autonomic function is related to albumin excretion within the normoalbuminuric range in IDDM patients. Diabetologia 40:718–725PubMedCrossRef Poulsen PL, Ebbehøj E, Hansen KW, Mogensen CE (1997) 24-h blood pressure and autonomic function is related to albumin excretion within the normoalbuminuric range in IDDM patients. Diabetologia 40:718–725PubMedCrossRef
24.
go back to reference Forsén A, Kangro M, Sterner G et al (2004) A 14-year prospective study of autonomic nerve function in type-1 diabetic patients: association with nephropathy. Diabet Med 21:852–858PubMedCrossRef Forsén A, Kangro M, Sterner G et al (2004) A 14-year prospective study of autonomic nerve function in type-1 diabetic patients: association with nephropathy. Diabet Med 21:852–858PubMedCrossRef
25.
go back to reference Piya MK, Shivu GN, Tahrani A et al (2011) Abnormal left ventricular torsion and cardiac autonomic dysfunction in subjects with type 1 diabetes mellitus. Metabolism 60:1115–1121PubMedCentralPubMedCrossRef Piya MK, Shivu GN, Tahrani A et al (2011) Abnormal left ventricular torsion and cardiac autonomic dysfunction in subjects with type 1 diabetes mellitus. Metabolism 60:1115–1121PubMedCentralPubMedCrossRef
26.
go back to reference Colombo JP, Shoemaker WCM, Belzberg HM, Hatzakis GM, Fathizadeh PM, Demetriades DM (2008) Noninvasive monitoring of the autonomic nervous system and hemodynamics of patients with blunt and penetrating trauma. J Trauma Inj Infect Crit Care 65:1364–1373CrossRef Colombo JP, Shoemaker WCM, Belzberg HM, Hatzakis GM, Fathizadeh PM, Demetriades DM (2008) Noninvasive monitoring of the autonomic nervous system and hemodynamics of patients with blunt and penetrating trauma. J Trauma Inj Infect Crit Care 65:1364–1373CrossRef
27.
28.
go back to reference Spallone V, Ziegler D, Freeman R et al (2011) Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 27:639–653CrossRef Spallone V, Ziegler D, Freeman R et al (2011) Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 27:639–653CrossRef
29.
go back to reference Bernardi L, Spallone V, Stevens M et al (2011) Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab Res Rev 27:654–664CrossRef Bernardi L, Spallone V, Stevens M et al (2011) Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab Res Rev 27:654–664CrossRef
30.
go back to reference Ziegler D, Laux G, Dannehl K et al (1992) Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med 9:166–175PubMedCrossRef Ziegler D, Laux G, Dannehl K et al (1992) Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med 9:166–175PubMedCrossRef
31.
go back to reference Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254PubMedCrossRef Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254PubMedCrossRef
32.
go back to reference Tahrani AA, Ali A, Raymond NT et al (2013) Obstructive sleep apnea and diabetic nephropathy: a cohort study. Diabetes Care 36:3718–3725PubMedCrossRef Tahrani AA, Ali A, Raymond NT et al (2013) Obstructive sleep apnea and diabetic nephropathy: a cohort study. Diabetes Care 36:3718–3725PubMedCrossRef
33.
go back to reference Chronic Kidney Disease Prognosis Consortium (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081CrossRef Chronic Kidney Disease Prognosis Consortium (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081CrossRef
34.
go back to reference Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG (2006) Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int 69:2057–2063PubMedCrossRef Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG (2006) Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int 69:2057–2063PubMedCrossRef
35.
go back to reference Pugliese G, Solini A, Fondelli C et al (2011) Reproducibility of albuminuria in type 2 diabetic subjects. Findings from the Renal Insufficiency and Cardiovascular Events (RIACE) study. Nephrol Dial Transplant 26:3950–3954PubMedCrossRef Pugliese G, Solini A, Fondelli C et al (2011) Reproducibility of albuminuria in type 2 diabetic subjects. Findings from the Renal Insufficiency and Cardiovascular Events (RIACE) study. Nephrol Dial Transplant 26:3950–3954PubMedCrossRef
36.
go back to reference Molitch ME, Steffes M, Sun W et al (2010) Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care 33:1536–1543PubMedCentralPubMedCrossRef Molitch ME, Steffes M, Sun W et al (2010) Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care 33:1536–1543PubMedCentralPubMedCrossRef
37.
go back to reference Zoppini G, Targher G, Chonchol M et al (2012) Predictors of estimated GFR decline in patients with type 2 diabetes and preserved kidney function. Clin J Am Soc Nephrol 7:401–408PubMedCrossRef Zoppini G, Targher G, Chonchol M et al (2012) Predictors of estimated GFR decline in patients with type 2 diabetes and preserved kidney function. Clin J Am Soc Nephrol 7:401–408PubMedCrossRef
38.
go back to reference Abbott CA, Chaturvedi N, Malik RA et al (2010) Explanations for the lower rates of diabetic neuropathy in Indian Asians versus Europeans. Diabetes Care 33:1325–1330PubMedCentralPubMedCrossRef Abbott CA, Chaturvedi N, Malik RA et al (2010) Explanations for the lower rates of diabetic neuropathy in Indian Asians versus Europeans. Diabetes Care 33:1325–1330PubMedCentralPubMedCrossRef
39.
go back to reference Tahrani AA, Askwith T, Stevens MJ (2010) Emerging drugs for diabetic neuropathy. Expert Opin Emerg Drugs 15:661–683PubMedCrossRef Tahrani AA, Askwith T, Stevens MJ (2010) Emerging drugs for diabetic neuropathy. Expert Opin Emerg Drugs 15:661–683PubMedCrossRef
40.
go back to reference Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625PubMedCrossRef Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625PubMedCrossRef
41.
go back to reference Krishnan AV, Kiernan MC (2007) Uremic neuropathy: clinical features and new pathophysiological insights. Muscle Nerve 35:273–290PubMedCrossRef Krishnan AV, Kiernan MC (2007) Uremic neuropathy: clinical features and new pathophysiological insights. Muscle Nerve 35:273–290PubMedCrossRef
42.
go back to reference Nasrallah MP, Ziyadeh FN (2013) Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. Semin Nephrol 33:54–65 (Abstract)PubMedCrossRef Nasrallah MP, Ziyadeh FN (2013) Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. Semin Nephrol 33:54–65 (Abstract)PubMedCrossRef
43.
go back to reference Kramer HJNQ (2003) Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289:3273–3277PubMedCrossRef Kramer HJNQ (2003) Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289:3273–3277PubMedCrossRef
44.
go back to reference Tahrani AA, Ali A, Raymond NT et al (2012) Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med 186:434–441PubMedCentralPubMedCrossRef Tahrani AA, Ali A, Raymond NT et al (2012) Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med 186:434–441PubMedCentralPubMedCrossRef
Metadata
Title
Cardiac autonomic neuropathy predicts renal function decline in patients with type 2 diabetes: a cohort study
Authors
Abd A. Tahrani
Kiran Dubb
Neil T. Raymond
Safia Begum
Quratul A. Altaf
Hamed Sadiqi
Milan K. Piya
Martin J. Stevens
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 6/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3211-2

Other articles of this Issue 6/2014

Diabetologia 6/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.