Skip to main content
Top
Published in: Diabetologia 5/2008

01-05-2008 | Article

Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action

Authors: K. Færch, A. Vaag, J. J. Holst, C. Glümer, O. Pedersen, K. Borch-Johnsen

Published in: Diabetologia | Issue 5/2008

Login to get access

Abstract

Aims/hypothesis

The impact of strategies for prevention of type 2 diabetes in isolated impaired fasting glycaemia (i-IFG) vs isolated impaired glucose tolerance (i-IGT) may differ depending on the underlying pathophysiology. We examined insulin secretion during OGTTs and IVGTTs, hepatic and peripheral insulin action, and glucagon and incretin hormone secretion in individuals with i-IFG (n = 18), i-IGT (n = 28) and normal glucose tolerance (NGT, n = 20).

Methods

Glucose tolerance status was confirmed by a repeated OGTT, during which circulating insulin, glucagon, glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) levels were measured. A euglycaemic–hyperinsulinaemic clamp with [3–3H]glucose preceded by an IVGTT was performed.

Results

Absolute first-phase insulin secretion during IVGTT was decreased in i-IFG (p = 0.026), but not in i-IGT (p = 0.892) compared with NGT. Hepatic insulin sensitivity was normal in i-IFG and i-IGT individuals (p ≥ 0.179). Individuals with i-IGT had peripheral insulin resistance (p = 0.003 vs NGT), and consequently the disposition index (DI; insulin secretion×insulin sensitivity) during IVGTT (DIIVGTT)) was reduced in both i-IFG and i-IGT (p < 0.005 vs NGT). In contrast, the DI during OGTT (DIOGTT) was decreased only in i-IGT (p < 0.001), but not in i-IFG (p = 0.143) compared with NGT. Decreased levels of GIP in i-IGT (p = 0.045 vs NGT) vs increased levels of GLP-1 in i-IFG (p = 0.013 vs NGT) during the OGTT may partially explain these discrepancies. Basal and post-load glucagon levels were significantly increased in both i-IFG and i-IGT individuals (p ≤ 0.001 vs NGT).

Conclusions/interpretation

We propose that differentiated preventive initiatives in prediabetic individuals should be tested, targeting the specific underlying metabolic defects.
Literature
1.
go back to reference Weyer C, Bogardus C, Pratley RE (1999) Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 48:2197–2203PubMedCrossRef Weyer C, Bogardus C, Pratley RE (1999) Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 48:2197–2203PubMedCrossRef
2.
go back to reference Abdul-Ghani MA, Tripathy D, DeFronzo RA (2006) Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes care 29:1130–1139PubMedCrossRef Abdul-Ghani MA, Tripathy D, DeFronzo RA (2006) Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes care 29:1130–1139PubMedCrossRef
3.
go back to reference Tripathy D, Carlsson M, Almgren P et al (2000) Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes 49:975–980PubMedCrossRef Tripathy D, Carlsson M, Almgren P et al (2000) Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes 49:975–980PubMedCrossRef
4.
go back to reference Hanefeld M, Koehler C, Fuecker K, Henkel E, Schaper F, Temelkova-Kurktschiev T (2003) Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose—the risk factor in impaired glucose tolerance for atherosclerosis and diabetes study. Diabetes Care 26:868–874PubMedCrossRef Hanefeld M, Koehler C, Fuecker K, Henkel E, Schaper F, Temelkova-Kurktschiev T (2003) Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose—the risk factor in impaired glucose tolerance for atherosclerosis and diabetes study. Diabetes Care 26:868–874PubMedCrossRef
5.
go back to reference Davies MJ, Raymond NT, Day JL, Hales CN, Burden AC (2000) Impaired glucose tolerance and fasting hyperglycaemia have different characteristics. Diabet Med 17:433–440PubMedCrossRef Davies MJ, Raymond NT, Day JL, Hales CN, Burden AC (2000) Impaired glucose tolerance and fasting hyperglycaemia have different characteristics. Diabet Med 17:433–440PubMedCrossRef
6.
go back to reference Carnevale-Schianca GP, Rossi A, Sainaghi PP, Maduli E, Bartoli E (2003) The significance of impaired fasting glucose versus impaired glucose tolerance: importance of insulin secretion and resistance. Diabetes Care 26:1333–1337PubMedCrossRef Carnevale-Schianca GP, Rossi A, Sainaghi PP, Maduli E, Bartoli E (2003) The significance of impaired fasting glucose versus impaired glucose tolerance: importance of insulin secretion and resistance. Diabetes Care 26:1333–1337PubMedCrossRef
7.
go back to reference Novoa FJ, Boronat M, Saavedra P et al (2005) Differences in cardiovascular risk factors, insulin resistance, and insulin secretion in individuals with normal glucose tolerance and in subjects with impaired glucose regulation: the Telde study. Diabetes Care 28:2388–2393PubMedCrossRef Novoa FJ, Boronat M, Saavedra P et al (2005) Differences in cardiovascular risk factors, insulin resistance, and insulin secretion in individuals with normal glucose tolerance and in subjects with impaired glucose regulation: the Telde study. Diabetes Care 28:2388–2393PubMedCrossRef
8.
go back to reference Piche ME, Despres JP, Pascot A et al (2004) Impaired fasting glucose vs glucose intolerance in pre-menopausal women: distinct metabolic entities and cardiovascular disease risk? Diabet Med 21:730–737PubMedCrossRef Piche ME, Despres JP, Pascot A et al (2004) Impaired fasting glucose vs glucose intolerance in pre-menopausal women: distinct metabolic entities and cardiovascular disease risk? Diabet Med 21:730–737PubMedCrossRef
9.
go back to reference Snehalatha C, Ramachandran A, Sivasankari S, Satyavani K, Vijay V (2003) Insulin secretion and action show differences in impaired fasting glucose and in impaired glucose tolerance in Asian Indians. Diabetes Metab Res Rev 19:329–332PubMedCrossRef Snehalatha C, Ramachandran A, Sivasankari S, Satyavani K, Vijay V (2003) Insulin secretion and action show differences in impaired fasting glucose and in impaired glucose tolerance in Asian Indians. Diabetes Metab Res Rev 19:329–332PubMedCrossRef
10.
go back to reference Abdul-Ghani MA, Sabbah M, Kher J, Minuchin O, Vardi P, Raz I (2006) Different contributions of insulin resistance and beta-cell dysfunction in overweight Israeli Arabs with IFG and IGT. Diabetes Metab Res Rev 22:126–130PubMedCrossRef Abdul-Ghani MA, Sabbah M, Kher J, Minuchin O, Vardi P, Raz I (2006) Different contributions of insulin resistance and beta-cell dysfunction in overweight Israeli Arabs with IFG and IGT. Diabetes Metab Res Rev 22:126–130PubMedCrossRef
11.
go back to reference Meyer C, Szoke E, Pimenta W et al (2006) Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 29:1909–1914PubMedCrossRef Meyer C, Szoke E, Pimenta W et al (2006) Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 29:1909–1914PubMedCrossRef
12.
go back to reference Jørgensen T, Borch-Johnsen K, Thomsen TF, Ibsen H, Glumer C, Charlotta P (2003) A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99 (1). Eur J Cardiovasc Prevention Rehab 10:377–386CrossRef Jørgensen T, Borch-Johnsen K, Thomsen TF, Ibsen H, Glumer C, Charlotta P (2003) A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99 (1). Eur J Cardiovasc Prevention Rehab 10:377–386CrossRef
13.
go back to reference World Health Organization (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO consultation. Part 1: diagnosis and classification of diabetes mellitus. WHO, Geneva, pp 1–59 World Health Organization (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO consultation. Part 1: diagnosis and classification of diabetes mellitus. WHO, Geneva, pp 1–59
14.
go back to reference Hother-Nielsen O, Beck-Nielsen H (1990) On the determination of basal glucose production rate in patients with type 2 (non-insulin-dependent) diabetes mellitus using primed-continuous 3-[3H]glucose infusion. Diabetologia 33:603–610PubMedCrossRef Hother-Nielsen O, Beck-Nielsen H (1990) On the determination of basal glucose production rate in patients with type 2 (non-insulin-dependent) diabetes mellitus using primed-continuous 3-[3H]glucose infusion. Diabetologia 33:603–610PubMedCrossRef
15.
go back to reference DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223PubMed DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223PubMed
16.
go back to reference Storgaard H, Song XM, Jensen CB et al (2001) Insulin signal transduction in skeletal muscle from glucose-intolerant relatives with type 2 diabetes. Diabetes 50:2770–2778PubMedCrossRef Storgaard H, Song XM, Jensen CB et al (2001) Insulin signal transduction in skeletal muscle from glucose-intolerant relatives with type 2 diabetes. Diabetes 50:2770–2778PubMedCrossRef
17.
go back to reference Krarup T, Madsbad S, Moody AJ et al (1983) Diminished immunoreactive gastric inhibitory polypeptide response to a meal in newly diagnosed type I (insulin-dependent) diabetics. J Clin Endocrinol Metab 56:1306–1312PubMedCrossRef Krarup T, Madsbad S, Moody AJ et al (1983) Diminished immunoreactive gastric inhibitory polypeptide response to a meal in newly diagnosed type I (insulin-dependent) diabetics. J Clin Endocrinol Metab 56:1306–1312PubMedCrossRef
18.
go back to reference Ørskov C, Rabenhøj L, Wettergren A, Kofod H, Holst JJ (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43:535–539PubMedCrossRef Ørskov C, Rabenhøj L, Wettergren A, Kofod H, Holst JJ (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43:535–539PubMedCrossRef
19.
go back to reference Holst JJ (1982) Evidence that enteroglucagon (II) is identical with the C-terminal sequence (residues 33–69) of glicentin. Biochem J 207:381–388PubMed Holst JJ (1982) Evidence that enteroglucagon (II) is identical with the C-terminal sequence (residues 33–69) of glicentin. Biochem J 207:381–388PubMed
20.
go back to reference Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430PubMedCrossRef Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430PubMedCrossRef
21.
go back to reference Seltzer HS, Allen EW, Herron AL, Brennan MT (1967) Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest 46:323–335PubMedCrossRef Seltzer HS, Allen EW, Herron AL, Brennan MT (1967) Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest 46:323–335PubMedCrossRef
22.
go back to reference Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA (2007) Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30:89–94PubMedCrossRef Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA (2007) Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30:89–94PubMedCrossRef
23.
go back to reference Festa A, D'Agostino R, Hanley AJ, Karter AJ, Saad MF, Haffner SM (2004) Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes 53:1549–1555PubMedCrossRef Festa A, D'Agostino R, Hanley AJ, Karter AJ, Saad MF, Haffner SM (2004) Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes 53:1549–1555PubMedCrossRef
24.
go back to reference Osei K, Gaillard T, Schuster DP (1997) Pathogenetic mechanisms of impaired glucose tolerance and type II diabetes in African-Americans. The significance of insulin secretion, insulin sensitivity, and glucose effectiveness. Diabetes Care 20:396–404PubMedCrossRef Osei K, Gaillard T, Schuster DP (1997) Pathogenetic mechanisms of impaired glucose tolerance and type II diabetes in African-Americans. The significance of insulin secretion, insulin sensitivity, and glucose effectiveness. Diabetes Care 20:396–404PubMedCrossRef
25.
go back to reference Pimenta WP, Santos ML, Cruz NS, Aragon FF, Padovani CR, Gerich JE (2002) Brazilian individuals with impaired glucose tolerance are characterized by impaired insulin secretion. Diabetes Metab 28:468–476PubMed Pimenta WP, Santos ML, Cruz NS, Aragon FF, Padovani CR, Gerich JE (2002) Brazilian individuals with impaired glucose tolerance are characterized by impaired insulin secretion. Diabetes Metab 28:468–476PubMed
26.
go back to reference Mooy JM, Grootenhuis PA, de Vries H et al (1996) Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia 39:298–305PubMedCrossRef Mooy JM, Grootenhuis PA, de Vries H et al (1996) Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia 39:298–305PubMedCrossRef
27.
go back to reference Ahrén B, Larsson H, Holst JJ (1997) Reduced gastric inhibitory polypeptide but normal glucagon-like peptide 1 response to oral glucose in postmenopausal women with impaired glucose tolerance. Eur J Endocrinol 137:127–131PubMedCrossRef Ahrén B, Larsson H, Holst JJ (1997) Reduced gastric inhibitory polypeptide but normal glucagon-like peptide 1 response to oral glucose in postmenopausal women with impaired glucose tolerance. Eur J Endocrinol 137:127–131PubMedCrossRef
28.
go back to reference Elahi D, Aloon-Dyke M, Fukagawa NK et al (1994) The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept 51:63–74PubMedCrossRef Elahi D, Aloon-Dyke M, Fukagawa NK et al (1994) The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept 51:63–74PubMedCrossRef
29.
go back to reference Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 7–36 amide. but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307PubMedCrossRef Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 7–36 amide. but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307PubMedCrossRef
30.
go back to reference Ørskov C, Jeppesen J, Madsbad S, Holst JJ (1991) Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest 87:415–423PubMedCrossRef Ørskov C, Jeppesen J, Madsbad S, Holst JJ (1991) Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest 87:415–423PubMedCrossRef
31.
go back to reference Vaag AA, Holst JJ, Vølund A, Beck-Nielsen H (2007) Gut incretin hormones in identical twins discordant for non-insulin dependent diabetes mellitus (NIDDM)—evidence for a decreased glucagon-like-peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 135:425–432 Vaag AA, Holst JJ, Vølund A, Beck-Nielsen H (2007) Gut incretin hormones in identical twins discordant for non-insulin dependent diabetes mellitus (NIDDM)—evidence for a decreased glucagon-like-peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 135:425–432
32.
go back to reference Knop FK, Vilsboll T, Hojberg PV et al (2007) Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56:1951–1959PubMedCrossRef Knop FK, Vilsboll T, Hojberg PV et al (2007) Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56:1951–1959PubMedCrossRef
33.
go back to reference Wasada T, Kuroki H, Katsumori K et al (2004) Who are more insulin resistant, people with IFG or people with IGT? Diabetologia 47:759–760CrossRef Wasada T, Kuroki H, Katsumori K et al (2004) Who are more insulin resistant, people with IFG or people with IGT? Diabetologia 47:759–760CrossRef
34.
go back to reference Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, DeFronzo RA (2006) Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance—results from the veterans administration genetic epidemiology study. Diabetes 55:1430–1435PubMedCrossRef Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, DeFronzo RA (2006) Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance—results from the veterans administration genetic epidemiology study. Diabetes 55:1430–1435PubMedCrossRef
35.
go back to reference Tripathy D, Almgren P, Tuomi T, Groop L (2004) Contribution of insulin-stimulated glucose uptake and basal hepatic insulin sensitivity to surrogate measures of insulin sensitivity. Diabetes Care 27:2204–2210PubMedCrossRef Tripathy D, Almgren P, Tuomi T, Groop L (2004) Contribution of insulin-stimulated glucose uptake and basal hepatic insulin sensitivity to surrogate measures of insulin sensitivity. Diabetes Care 27:2204–2210PubMedCrossRef
36.
go back to reference Abdul-Ghani MA, DeFronzo RA (2007) Fasting hyperglycemia impairs glucose—but not insulin-mediated suppression of glucagon secretion. J Clin Endocrinol Metab 92:1778–1784PubMedCrossRef Abdul-Ghani MA, DeFronzo RA (2007) Fasting hyperglycemia impairs glucose—but not insulin-mediated suppression of glucagon secretion. J Clin Endocrinol Metab 92:1778–1784PubMedCrossRef
37.
go back to reference Ahrén B, Larsson H (2001) Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia 44:1998–2003PubMedCrossRef Ahrén B, Larsson H (2001) Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia 44:1998–2003PubMedCrossRef
38.
go back to reference Mitrakou A, Kelley D, Mokan M et al (1992) Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 326:22–29PubMedCrossRef Mitrakou A, Kelley D, Mokan M et al (1992) Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 326:22–29PubMedCrossRef
39.
go back to reference Brodsky IG (1999) Hormone, cytokine, and nutrient interactions. In: Shills ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease. 9th edn. Lippincott Williams & Wilkins, Baltimore, MD, pp 699–724 Brodsky IG (1999) Hormone, cytokine, and nutrient interactions. In: Shills ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease. 9th edn. Lippincott Williams & Wilkins, Baltimore, MD, pp 699–724
40.
go back to reference Felig P, Wahren J, Hendler R (1976) Influence of physiologic hyperglucagonemia on basal and insulin-inhibited splanchnic glucose output in normal man. J Clin Invest 58:761–765PubMedCrossRef Felig P, Wahren J, Hendler R (1976) Influence of physiologic hyperglucagonemia on basal and insulin-inhibited splanchnic glucose output in normal man. J Clin Invest 58:761–765PubMedCrossRef
41.
go back to reference Bock G, la Man C, Campioni M et al (2007) Effects of nonglucose nutrients on insulin secretion and action in people with pre-diabetes. Diabetes 56:1113–1119PubMedCrossRef Bock G, la Man C, Campioni M et al (2007) Effects of nonglucose nutrients on insulin secretion and action in people with pre-diabetes. Diabetes 56:1113–1119PubMedCrossRef
42.
go back to reference Ward WK, Bolgiano DC, McKnight B et al (1984) Diminished B cell secretory capacity in patients with noninsulin dependent diabetes mellitus. J Clin Invest 74:1318–1328PubMedCrossRef Ward WK, Bolgiano DC, McKnight B et al (1984) Diminished B cell secretory capacity in patients with noninsulin dependent diabetes mellitus. J Clin Invest 74:1318–1328PubMedCrossRef
43.
go back to reference Healy GN, Dunstan DW, Shaw JE, Zimmet PZ, Owen N (2006) Beneficial associations of physical activity with 2-h but not fasting blood glucose in Australian adults. Diabetes Care 29:2598–2604PubMedCrossRef Healy GN, Dunstan DW, Shaw JE, Zimmet PZ, Owen N (2006) Beneficial associations of physical activity with 2-h but not fasting blood glucose in Australian adults. Diabetes Care 29:2598–2604PubMedCrossRef
44.
go back to reference Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403PubMedCrossRef Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403PubMedCrossRef
Metadata
Title
Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action
Authors
K. Færch
A. Vaag
J. J. Holst
C. Glümer
O. Pedersen
K. Borch-Johnsen
Publication date
01-05-2008
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 5/2008
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-008-0951-x

Other articles of this Issue 5/2008

Diabetologia 5/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.