Skip to main content
Top
Published in: Diabetologia 4/2006

01-04-2006 | Article

C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice

Authors: N. Lindenblatt, B. Braun, M. D. Menger, E. Klar, B. Vollmar

Published in: Diabetologia | Issue 4/2006

Login to get access

Abstract

Aims/hypothesis

Diabetic macro- and microangiopathy are associated with a high risk of vascular complications. The diabetic patient exhibits a pathological coagulation state, with an increased synthesis of coagulation factors and plasminogen activator inhibitor 1 (PAI-1) as well as an enhanced aggregation of platelets. Previous studies have shown that C-peptide can reduce leucocyte-endothelial cell interaction and improve microvascular blood flow in patients with type 1 diabetes. In the present study, we examined in vivo whether C-peptide is able to reduce platelet activation and through that microvascular thrombus formation.

Materials and methods

In the microvessels of cremaster muscle preparations taken from normal and diabetic mice, ferric chloride-induced thrombus formation was analysed using intravital fluorescence microscopy.

Results

I.V. administration of C-peptide in high dose (70 nmol/kg), but not in low dose (7 nmol/kg), caused a significant delay in arteriolar and venular thrombus growth in normal and diabetic mice. This effect was repressed by cremaster muscle superfusion with insulin (100 μU/ml) in diabetic animals, but particularly in normal animals. In parallel, immunohistochemistry demonstrated a higher number of PAI-1-expressing vessels in cremaster muscle tissue from control animals and from animals treated with C-peptide and insulin compared with tissue from animals with C-peptide treatment application alone.

Conclusions/interpretation

We conclude that C-peptide possesses antithrombotic actions in vivo. A causal role of PAI-1 in this scenario needs to be further addressed. However, the reversal of C-peptide action by insulin may invalidate the use of this peptide as a treatment option to improve rheology and microcirculation in diabetic patients.
Literature
1.
go back to reference Calles-Escandon J, Cipolla M (2001) Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev 22:36–52CrossRefPubMed Calles-Escandon J, Cipolla M (2001) Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev 22:36–52CrossRefPubMed
2.
go back to reference Creager MA, Luscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108:1527–1532CrossRefPubMed Creager MA, Luscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108:1527–1532CrossRefPubMed
3.
go back to reference De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974CrossRefPubMed De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974CrossRefPubMed
4.
go back to reference Luft FC (2002) Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal diseases. Curr Opin Nephrol Hypertens 11:59–66CrossRefPubMed Luft FC (2002) Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal diseases. Curr Opin Nephrol Hypertens 11:59–66CrossRefPubMed
5.
go back to reference Auwerx J, Bouillon R, Collen D, Geboers J (1988) Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 8:68–72PubMed Auwerx J, Bouillon R, Collen D, Geboers J (1988) Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 8:68–72PubMed
6.
go back to reference Jokl R, Laimins M, Klein RL, Lyons TJ, Lopes-Virella MF, Colwell JA (1994) Platelet plasminogen activator inhibitor 1 in patients with type II diabetes. Diabetes Care 17:818–823PubMedCrossRef Jokl R, Laimins M, Klein RL, Lyons TJ, Lopes-Virella MF, Colwell JA (1994) Platelet plasminogen activator inhibitor 1 in patients with type II diabetes. Diabetes Care 17:818–823PubMedCrossRef
7.
go back to reference Vericel E, Januel C, Carreras M, Moulin P, Lagarde M (2004) Diabetic patients without vascular complication display enhanced basal platelet activation and decreased antioxidant status. Diabetes 53:1046–1051PubMedCrossRef Vericel E, Januel C, Carreras M, Moulin P, Lagarde M (2004) Diabetic patients without vascular complication display enhanced basal platelet activation and decreased antioxidant status. Diabetes 53:1046–1051PubMedCrossRef
8.
go back to reference Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL (2001) Platelet dysfunction in type 2 diabetes. Diabetes Care 24:1476–1485PubMedCrossRef Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL (2001) Platelet dysfunction in type 2 diabetes. Diabetes Care 24:1476–1485PubMedCrossRef
9.
go back to reference Li Y, Woo V, Bose R (2001) Platelet hyperactivity and abnormal Ca2+ homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol 280:H1480–H1489PubMed Li Y, Woo V, Bose R (2001) Platelet hyperactivity and abnormal Ca2+ homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol 280:H1480–H1489PubMed
10.
go back to reference Ceriello A, Giacomello R, Stel G et al (1995) Hyperglycemia-induced thrombin formation in diabetes. The possible role of oxidative stress. Diabetes 44:924–928PubMedCrossRef Ceriello A, Giacomello R, Stel G et al (1995) Hyperglycemia-induced thrombin formation in diabetes. The possible role of oxidative stress. Diabetes 44:924–928PubMedCrossRef
11.
go back to reference Pandolfi A, Cetrullo D, Polishuck R et al (2001) Plasminogen activator inhibitor type 1 is increased in the arterial wall of type II diabetic subjects. Arterioscler Thromb Vasc Biol 21:1378–1382PubMedCrossRef Pandolfi A, Cetrullo D, Polishuck R et al (2001) Plasminogen activator inhibitor type 1 is increased in the arterial wall of type II diabetic subjects. Arterioscler Thromb Vasc Biol 21:1378–1382PubMedCrossRef
12.
go back to reference Hafer-Macko CE, Ivey FM, Gyure KA, Sorkin JD, Macko RF (2002) Thrombomodulin deficiency in human diabetic nerve microvasculature. Diabetes 51:1957–1963PubMedCrossRef Hafer-Macko CE, Ivey FM, Gyure KA, Sorkin JD, Macko RF (2002) Thrombomodulin deficiency in human diabetic nerve microvasculature. Diabetes 51:1957–1963PubMedCrossRef
13.
go back to reference Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J Clin Invest 101: 2036–2041PubMedCrossRef Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J Clin Invest 101: 2036–2041PubMedCrossRef
14.
go back to reference Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthetase by proinsulin C-peptide. Nitric Oxide 9:95–102CrossRefPubMed Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthetase by proinsulin C-peptide. Nitric Oxide 9:95–102CrossRefPubMed
15.
go back to reference Scalia R, Coyle KM, Levine BJ, Booth G, Lefer AM (2000) C-peptide inhibits leukocyte–endothelium interaction in the microcirculation during acute endothelial dysfunction. FASEB J 14:2357–2364CrossRefPubMed Scalia R, Coyle KM, Levine BJ, Booth G, Lefer AM (2000) C-peptide inhibits leukocyte–endothelium interaction in the microcirculation during acute endothelial dysfunction. FASEB J 14:2357–2364CrossRefPubMed
16.
go back to reference Baez S (1973) An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5:384–394CrossRefPubMed Baez S (1973) An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5:384–394CrossRefPubMed
17.
go back to reference Pierangeli SS, Colden-Stanfield M, Liu X, Barker JH, Anderson GL, Harris EN (1999) Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo. Circulation 99:1997–2002PubMed Pierangeli SS, Colden-Stanfield M, Liu X, Barker JH, Anderson GL, Harris EN (1999) Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo. Circulation 99:1997–2002PubMed
18.
go back to reference Thorlacius H, Vollmar B, Seyfert UT, Vestweber D, Menger MD (2000) The polysaccharide fucoidan inhibits microvascular thrombus formation independently from P- and L-selectin function in vivo. Eur J Clin Invest 30:804–810CrossRefPubMed Thorlacius H, Vollmar B, Seyfert UT, Vestweber D, Menger MD (2000) The polysaccharide fucoidan inhibits microvascular thrombus formation independently from P- and L-selectin function in vivo. Eur J Clin Invest 30:804–810CrossRefPubMed
19.
go back to reference Vollmar B, Schmitz R, Kunz D, Menger MD (2001) Lack of in vivo function of CD31 in vascular thrombosis. Thromb Haemost 85:160–164PubMed Vollmar B, Schmitz R, Kunz D, Menger MD (2001) Lack of in vivo function of CD31 in vascular thrombosis. Thromb Haemost 85:160–164PubMed
20.
go back to reference Lindenblatt N, Bordel R, Schareck W, Menger MD, Vollmar B (2004) Vascular heme oxygenase-1 induction suppresses microvascular thrombus formation in vivo. Arterioscler Thromb Vasc Biol 24:601–606CrossRefPubMed Lindenblatt N, Bordel R, Schareck W, Menger MD, Vollmar B (2004) Vascular heme oxygenase-1 induction suppresses microvascular thrombus formation in vivo. Arterioscler Thromb Vasc Biol 24:601–606CrossRefPubMed
21.
go back to reference Baker M, Wayland H (1974) On-line volume flow rate and velocity profile measurements for blood in microvessels. Microvasc Res 7:131–143CrossRefPubMed Baker M, Wayland H (1974) On-line volume flow rate and velocity profile measurements for blood in microvessels. Microvasc Res 7:131–143CrossRefPubMed
22.
go back to reference Dunne JL, Ballantyne CM, Beaudet AL, Ley K (2002) Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood 99:336–341CrossRefPubMed Dunne JL, Ballantyne CM, Beaudet AL, Ley K (2002) Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood 99:336–341CrossRefPubMed
23.
go back to reference Kaul DK, Fabry ME, Costantini F, Rubin EM, Nagel RL (1995) In vivo demonstration of red cell–endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse. J Clin Invest 96:2845–2853PubMed Kaul DK, Fabry ME, Costantini F, Rubin EM, Nagel RL (1995) In vivo demonstration of red cell–endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse. J Clin Invest 96:2845–2853PubMed
24.
go back to reference Lindenblatt N, Schareck W, Belusa L, Nickels RM, Menger MD, Vollmar B (2003) Anti-oxidant ebselen delays microvascular thrombus formation in the rat cremaster muscle by inhibiting platelet P-selectin expression. Thromb Haemost 90:882–892PubMed Lindenblatt N, Schareck W, Belusa L, Nickels RM, Menger MD, Vollmar B (2003) Anti-oxidant ebselen delays microvascular thrombus formation in the rat cremaster muscle by inhibiting platelet P-selectin expression. Thromb Haemost 90:882–892PubMed
25.
go back to reference Kim MB, Sarelius IH (2004) Regulation of leucocyte recruitment by local wall shear rate and leucocyte delivery. Microcirculation 11:55–67CrossRefPubMed Kim MB, Sarelius IH (2004) Regulation of leucocyte recruitment by local wall shear rate and leucocyte delivery. Microcirculation 11:55–67CrossRefPubMed
26.
go back to reference Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566CrossRefPubMed Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566CrossRefPubMed
27.
go back to reference Rigler R, Pramanik A, Jonasson P et al (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96:13318–13323CrossRefPubMed Rigler R, Pramanik A, Jonasson P et al (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96:13318–13323CrossRefPubMed
28.
go back to reference Horwitz DL, Starr JI, Mako ME, Blackard WG, Rubenstein AH (1975) Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest 55:1278–1283PubMedCrossRef Horwitz DL, Starr JI, Mako ME, Blackard WG, Rubenstein AH (1975) Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest 55:1278–1283PubMedCrossRef
29.
go back to reference Shattil SJ, Cunningham M, Hoxie JA (1987) Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 70:307–315PubMed Shattil SJ, Cunningham M, Hoxie JA (1987) Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 70:307–315PubMed
31.
go back to reference Schmitt A, Guichard J, Masse JM, Debili N, Cramer EM (2001) Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets. Exp Hematol 29:1295–1302CrossRefPubMed Schmitt A, Guichard J, Masse JM, Debili N, Cramer EM (2001) Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets. Exp Hematol 29:1295–1302CrossRefPubMed
32.
go back to reference Smyth SS, Tsakiris DA, Scudder LE, Coller BS (2000) Structure and function of murine alphaIIbbeta3 (GPIIb/IIIa): studies using monoclonal antibodies and beta3-null mice. Thromb Haemost 84:1103–1108PubMed Smyth SS, Tsakiris DA, Scudder LE, Coller BS (2000) Structure and function of murine alphaIIbbeta3 (GPIIb/IIIa): studies using monoclonal antibodies and beta3-null mice. Thromb Haemost 84:1103–1108PubMed
33.
go back to reference Wahren J (2004) C-peptide: new findings and therapeutic implications in diabetes. Clin Physiol Funct Imaging 24:180–189CrossRefPubMed Wahren J (2004) C-peptide: new findings and therapeutic implications in diabetes. Clin Physiol Funct Imaging 24:180–189CrossRefPubMed
34.
go back to reference Wojcikowski C, Fussgänger R, Pfeiffer E (1977) Inhibition of insulin and glucagon secretion of the isolated rat pancreas by synthetic human and rat C-peptide. In: Beyer J, Krause U, Naegele W (eds) C-peptide. Schnetzor, Konstanz, pp 75–88 Wojcikowski C, Fussgänger R, Pfeiffer E (1977) Inhibition of insulin and glucagon secretion of the isolated rat pancreas by synthetic human and rat C-peptide. In: Beyer J, Krause U, Naegele W (eds) C-peptide. Schnetzor, Konstanz, pp 75–88
35.
go back to reference Jensen ME, Messina EJ (1999) C-peptide induces a concentration-dependent dilatation of skeletal muscle arterioles only in presence of insulin. Am J Physiol Heart Circ Physiol 45:H1223–H1228 Jensen ME, Messina EJ (1999) C-peptide induces a concentration-dependent dilatation of skeletal muscle arterioles only in presence of insulin. Am J Physiol Heart Circ Physiol 45:H1223–H1228
36.
go back to reference Ohtomo Y, Aperia A, Sahlgren B, Johansson BL, Wahren J (1996) C-peptide stimulates rat renal tubular Na+, K(+)-ATPase activity in synergism with neuropeptide Y. Diabetologia 39:199–205CrossRefPubMed Ohtomo Y, Aperia A, Sahlgren B, Johansson BL, Wahren J (1996) C-peptide stimulates rat renal tubular Na+, K(+)-ATPase activity in synergism with neuropeptide Y. Diabetologia 39:199–205CrossRefPubMed
37.
go back to reference Kunt T, Schneider S, Pfutzner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type I diabetes mellitus. Diabetologia 42:465–471CrossRefPubMed Kunt T, Schneider S, Pfutzner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type I diabetes mellitus. Diabetologia 42:465–471CrossRefPubMed
38.
go back to reference Vague P, Coste TC, Jannot MF, Raccah D, Tsimaratos M (2004) C-peptide, Na+,K(+)-ATPase, and diabetes. Exp Diabesity Res 5:37–50CrossRefPubMed Vague P, Coste TC, Jannot MF, Raccah D, Tsimaratos M (2004) C-peptide, Na+,K(+)-ATPase, and diabetes. Exp Diabesity Res 5:37–50CrossRefPubMed
39.
go back to reference Forst T, Kunt T (2004) Effects of C-peptide on microvascular blood flow and blood hemorheology. Exp Diabesity Res 5:51–64CrossRefPubMed Forst T, Kunt T (2004) Effects of C-peptide on microvascular blood flow and blood hemorheology. Exp Diabesity Res 5:51–64CrossRefPubMed
40.
go back to reference Alessi MC, Juhan-Vague I (2004) Contribution of PAI-1 in cardiovascular pathology. Arch Mal Coeur Vaiss 97:673–678PubMed Alessi MC, Juhan-Vague I (2004) Contribution of PAI-1 in cardiovascular pathology. Arch Mal Coeur Vaiss 97:673–678PubMed
41.
go back to reference Juhan-Vague I, Morange PE, Alessi MC (2002) The insulin resistance syndrome: implications for thrombosis and cardiovascular disease. Pathophysiol Haemost Thromb 32:269–273CrossRefPubMed Juhan-Vague I, Morange PE, Alessi MC (2002) The insulin resistance syndrome: implications for thrombosis and cardiovascular disease. Pathophysiol Haemost Thromb 32:269–273CrossRefPubMed
42.
go back to reference Schafer K, Muller K, Hecke A et al (2003) Enhanced thrombosis in atherosclerosis-prone mice is associated with increased arterial expression of plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 23:2097–2103CrossRefPubMed Schafer K, Muller K, Hecke A et al (2003) Enhanced thrombosis in atherosclerosis-prone mice is associated with increased arterial expression of plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 23:2097–2103CrossRefPubMed
43.
go back to reference Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94:1172–1179PubMed Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94:1172–1179PubMed
44.
go back to reference Chakraborty K, Sinha AK (2004) The role of insulin as an antithrombotic humoral factor. Bioessays 26:91–98CrossRefPubMed Chakraborty K, Sinha AK (2004) The role of insulin as an antithrombotic humoral factor. Bioessays 26:91–98CrossRefPubMed
45.
go back to reference Nordt TK, Sawa H, Fujii S, Sobel BE (1995) Induction of plasminogen activator inhibitor type-1 (PAI-1) by proinsulin and insulin in vivo. Circulation 91:764–770PubMed Nordt TK, Sawa H, Fujii S, Sobel BE (1995) Induction of plasminogen activator inhibitor type-1 (PAI-1) by proinsulin and insulin in vivo. Circulation 91:764–770PubMed
46.
go back to reference Trovati M, Anfossi G (2002) Influence of insulin and of insulin resistance on platelet and vascular smooth muscle cell function. J Diabetes Complications 16:35–40CrossRefPubMed Trovati M, Anfossi G (2002) Influence of insulin and of insulin resistance on platelet and vascular smooth muscle cell function. J Diabetes Complications 16:35–40CrossRefPubMed
47.
go back to reference Hu H, Li N, Ekberg K, Johansson BL, Hjemdahl P (2002) Insulin, but not proinsulin C-peptide, enhances platelet fibrinogen binding in vitro in type 1 diabetes mellitus patients and healthy subjects. Thromb Res 106:91–95CrossRefPubMed Hu H, Li N, Ekberg K, Johansson BL, Hjemdahl P (2002) Insulin, but not proinsulin C-peptide, enhances platelet fibrinogen binding in vitro in type 1 diabetes mellitus patients and healthy subjects. Thromb Res 106:91–95CrossRefPubMed
48.
go back to reference Hu H, Hjemdahl P, Li N (2002) Effects of insulin on platelet and leukocyte activity in whole blood. Thromb Res 107:209–215CrossRefPubMed Hu H, Hjemdahl P, Li N (2002) Effects of insulin on platelet and leukocyte activity in whole blood. Thromb Res 107:209–215CrossRefPubMed
49.
go back to reference Johansson BL, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J (2000) Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabet Med 17:181–189CrossRefPubMed Johansson BL, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J (2000) Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabet Med 17:181–189CrossRefPubMed
50.
go back to reference Johansson BL, Borg K, Fernqvist-Forbes E, Odergren T, Remahl S, Wahren J (1996) C-peptide improves autonomic nerve function in IDDM patients. Diabetologia 39:687–695PubMedCrossRef Johansson BL, Borg K, Fernqvist-Forbes E, Odergren T, Remahl S, Wahren J (1996) C-peptide improves autonomic nerve function in IDDM patients. Diabetologia 39:687–695PubMedCrossRef
Metadata
Title
C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice
Authors
N. Lindenblatt
B. Braun
M. D. Menger
E. Klar
B. Vollmar
Publication date
01-04-2006
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 4/2006
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0152-4

Other articles of this Issue 4/2006

Diabetologia 4/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.