Skip to main content
Top
Published in: Diabetologia 2/2005

01-02-2005 | Article

Determinants of subclinical diabetic heart disease

Authors: Z. Y. Fang, R. Schull-Meade, M. Downey, J. Prins, T. H. Marwick

Published in: Diabetologia | Issue 2/2005

Login to get access

Abstract

Aims/hypothesis

Subclinical left ventricular (LV) dysfunction has been shown by tissue Doppler and strain imaging in diabetic patients in the absence of coronary disease or LV hypertrophy, but the prevalence and aetiology of this finding remain unclear. This study sought to identify the prevalence and the determinants of subclinical diabetic heart disease.

Methods

A group of 219 unselected patients with type 2 diabetes without known cardiac disease underwent resting and stress echocardiography. After exclusion of coronary artery disease or LV hypertrophy, the remaining 120 patients (age 57±10 years, 73 male) were studied with tissue Doppler imaging. Peak systolic strain of each wall and systolic (Sm) and diastolic (Em) velocity of each basal segment were measured from the three apical views and averaged for each patient. Significant subclinical LV dysfunction was identified according to Sm and Em normal ranges adjusted by age and sex. Strain and Em were correlated with clinical, therapeutic, echocardiographic and biochemical variables, and significant independent associations were sought using a multiple linear regression model.

Results

Significant subclinical LV dysfunction was present in 27% diabetic patients. Myocardial systolic dysfunction by peak strain was independently associated with glycosylated haemoglobin level (p<0.001) and lack of angiotensin-converting enzyme inhibitor treatment (p=0.003). Myocardial diastolic function (Em) was independently predicted by age (p=0.013), hypertension (p=0.001), insulin (p=0.008) and metformin (p=0.01) treatment.

Conclusions/interpretation

In patients with diabetes mellitus, subclinical LV dysfunction is common and associated with poor diabetic control, advancing age, hypertension and metformin treatment; ACE inhibitor and insulin therapies appear to be protective.
Literature
1.
go back to reference Kuller LH, Shemanski L, Psaty BM et al. (1995) Subclinical disease as an independent risk factor for cardiovascular disease. Circulation 92:720–726 Kuller LH, Shemanski L, Psaty BM et al. (1995) Subclinical disease as an independent risk factor for cardiovascular disease. Circulation 92:720–726
2.
go back to reference Poirier P, Garneau C, Bogaty P et al. (2000) Impact of left ventricular diastolic dysfunction on maximal treadmill performance in normotensive subjects with well-controlled type 2 diabetes mellitus. Am J Cardiol 85:473–477CrossRef Poirier P, Garneau C, Bogaty P et al. (2000) Impact of left ventricular diastolic dysfunction on maximal treadmill performance in normotensive subjects with well-controlled type 2 diabetes mellitus. Am J Cardiol 85:473–477CrossRef
3.
go back to reference Kuller LH, Velentgas P, Barzilay J, Beauchamp NJ, O’Leary DH, Savage PJ (2000) Diabetes mellitus: subclinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler Thromb Vasc Biol 20:823–829 Kuller LH, Velentgas P, Barzilay J, Beauchamp NJ, O’Leary DH, Savage PJ (2000) Diabetes mellitus: subclinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler Thromb Vasc Biol 20:823–829
4.
go back to reference Fang ZY, Leano R, Marwick TH (2003) Relationship between longitudinal and radial contractility in subclinical heart disease. Clin Sci (Lond) 106:53–60 Fang ZY, Leano R, Marwick TH (2003) Relationship between longitudinal and radial contractility in subclinical heart disease. Clin Sci (Lond) 106:53–60
5.
go back to reference Naqvi TZ, Neyman G, Broyde A, Mustafa J, Siegel RJ (2001) Comparison of myocardial tissue Doppler with transmitral flow Doppler in left ventricular hypertrophy. J Am Soc Echocardiogr 14:1153–1160CrossRef Naqvi TZ, Neyman G, Broyde A, Mustafa J, Siegel RJ (2001) Comparison of myocardial tissue Doppler with transmitral flow Doppler in left ventricular hypertrophy. J Am Soc Echocardiogr 14:1153–1160CrossRef
6.
go back to reference Kukulski T, Jamal F, D’hooge J, Bijnens B, De SI, Sutherland GR (2002) Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. J Am Soc Echocardiogr 15:1–12CrossRef Kukulski T, Jamal F, D’hooge J, Bijnens B, De SI, Sutherland GR (2002) Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. J Am Soc Echocardiogr 15:1–12CrossRef
7.
go back to reference Andersen NH, Poulsen SH, Eiskjaer H, Poulsen PL, Mogensen CE (2003) Decreased left ventricular longitudinal contraction in normotensive and normoalbuminuric patients with Type II diabetes mellitus: a Doppler tissue tracking and strain rate echocardiography study. Clin Sci (Lond) 105:59–66 Andersen NH, Poulsen SH, Eiskjaer H, Poulsen PL, Mogensen CE (2003) Decreased left ventricular longitudinal contraction in normotensive and normoalbuminuric patients with Type II diabetes mellitus: a Doppler tissue tracking and strain rate echocardiography study. Clin Sci (Lond) 105:59–66
8.
go back to reference Fang ZY, Schull-Meade R, Leano R, Mottram PM, Prins JP, Marwick TH (2005) Screening for heart disease in diabetic subjects. Am Heart J (in press) Fang ZY, Schull-Meade R, Leano R, Mottram PM, Prins JP, Marwick TH (2005) Screening for heart disease in diabetic subjects. Am Heart J (in press)
9.
go back to reference Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55:613–618PubMed Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55:613–618PubMed
10.
go back to reference Levy D, Savage DD, Garrison RJ, Anderson KM, Kannel WB, Castelli WP (1987) Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart Study. Am J Cardiol 59:956–960CrossRefPubMed Levy D, Savage DD, Garrison RJ, Anderson KM, Kannel WB, Castelli WP (1987) Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart Study. Am J Cardiol 59:956–960CrossRefPubMed
11.
go back to reference Nikitin NP, Witte KK, Thackray SD, de Silva R, Clark AL, Cleland JG (2003) Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging. J Am Soc Echocardiogr 16:906–921CrossRef Nikitin NP, Witte KK, Thackray SD, de Silva R, Clark AL, Cleland JG (2003) Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging. J Am Soc Echocardiogr 16:906–921CrossRef
12.
go back to reference Broderick TL, Kopp SJ, Daar JT, Romano FD, Paulson DJ (1994) Relation of glycosylated hemoglobin to in vivo cardiac function in response to dobutamine in spontaneously diabetic BB Wor rats. Can J Physiol Pharmacol 72:722–737 Broderick TL, Kopp SJ, Daar JT, Romano FD, Paulson DJ (1994) Relation of glycosylated hemoglobin to in vivo cardiac function in response to dobutamine in spontaneously diabetic BB Wor rats. Can J Physiol Pharmacol 72:722–737
13.
go back to reference Hirai J, Ueda K, Takegoshi T, Mabuchi H (1992) Effects of metabolic control on ventricular function in type 2 diabetic patients. Intern Med 31:725–730 Hirai J, Ueda K, Takegoshi T, Mabuchi H (1992) Effects of metabolic control on ventricular function in type 2 diabetic patients. Intern Med 31:725–730
14.
go back to reference Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG (2001) Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 24:5–10PubMed Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG (2001) Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 24:5–10PubMed
15.
go back to reference Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948 Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948
16.
go back to reference Given MB, Lowe RF, Gelvin CR, Sander GE, Giles TD (1994) Preservation of left ventricular function and coronary flow by angiotensin I-converting enzyme inhibition in the hypertensive-diabetic Dahl rat. Am J Hypertens 7:919–925 Given MB, Lowe RF, Gelvin CR, Sander GE, Giles TD (1994) Preservation of left ventricular function and coronary flow by angiotensin I-converting enzyme inhibition in the hypertensive-diabetic Dahl rat. Am J Hypertens 7:919–925
17.
go back to reference Rosen R, Rump AF, Rosen P (1995) The ACE-inhibitor captopril improves myocardial perfusion in spontaneously diabetic (BB) rats. Diabetologia 38:509–517 Rosen R, Rump AF, Rosen P (1995) The ACE-inhibitor captopril improves myocardial perfusion in spontaneously diabetic (BB) rats. Diabetologia 38:509–517
18.
go back to reference Litwin SE, Raya TE, Anderson PG, Daugherty S, Goldman S (1990) Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. J Clin Invest 86:481–488 Litwin SE, Raya TE, Anderson PG, Daugherty S, Goldman S (1990) Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. J Clin Invest 86:481–488
19.
go back to reference Fiorina P, La Rocca E, Astorri E et al. (2000) Reversal of left ventricular diastolic dysfunction after kidney–pancreas transplantation in type 1 diabetic uremic patients. Diabetes Care 23:1804–1810 Fiorina P, La Rocca E, Astorri E et al. (2000) Reversal of left ventricular diastolic dysfunction after kidney–pancreas transplantation in type 1 diabetic uremic patients. Diabetes Care 23:1804–1810
20.
go back to reference Diamant M, Lamb HJ, Groeneveld Y et al. (2003) Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 42:328–335CrossRef Diamant M, Lamb HJ, Groeneveld Y et al. (2003) Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 42:328–335CrossRef
21.
go back to reference Stroedter D, Schmidt T, Bretzel RG, Federlin K (1995) Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transplantation in mild diabetes in the rat. Acta Diabetol 32:235–243 Stroedter D, Schmidt T, Bretzel RG, Federlin K (1995) Glucose metabolism and left ventricular dysfunction are normalized by insulin and islet transplantation in mild diabetes in the rat. Acta Diabetol 32:235–243
22.
go back to reference Higuchi M, Uezu K, Sakanashi M (1993) Ex vivo effect of insulin on normal and diabetic rat hearts hypoperfused with norepinephrine. Eur J Pharmacol 242:293–300CrossRef Higuchi M, Uezu K, Sakanashi M (1993) Ex vivo effect of insulin on normal and diabetic rat hearts hypoperfused with norepinephrine. Eur J Pharmacol 242:293–300CrossRef
23.
go back to reference Norton GR, Candy G, Woodiwiss AJ (1996) Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 93:1905–1912 Norton GR, Candy G, Woodiwiss AJ (1996) Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 93:1905–1912
24.
go back to reference Petrova R, Yamamoto Y, Muraki K et al. (2002) Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol 34:1425–1431CrossRef Petrova R, Yamamoto Y, Muraki K et al. (2002) Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol 34:1425–1431CrossRef
25.
go back to reference Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR Protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol Heart Circ Physiol 281:H1137–H1147 Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR Protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol Heart Circ Physiol 281:H1137–H1147
26.
go back to reference Thompson EW (1994) Quantitative analysis of myocardial structure in insulin-dependent diabetes mellitus: effects of immediate and delayed insulin replacement. Proc Soc Exp Biol Med 205:294–305 Thompson EW (1994) Quantitative analysis of myocardial structure in insulin-dependent diabetes mellitus: effects of immediate and delayed insulin replacement. Proc Soc Exp Biol Med 205:294–305
27.
go back to reference Ren J, Dominguez LJ, Sowers JR, Davidoff AJ (1996) Troglitazone attenuates high-glucose-induced abnormalities in relaxation and intracellular calcium in rat ventricular myocytes. Diabetes 45:1822–1825 Ren J, Dominguez LJ, Sowers JR, Davidoff AJ (1996) Troglitazone attenuates high-glucose-induced abnormalities in relaxation and intracellular calcium in rat ventricular myocytes. Diabetes 45:1822–1825
28.
go back to reference Tsuji T, Mizushige K, Noma T et al. (2001) Pioglitazone improves left ventricular diastolic function and decreases collagen accumulation in prediabetic stage of a type II diabetic rat. J Cardiovasc Pharmacol 38:868–874CrossRef Tsuji T, Mizushige K, Noma T et al. (2001) Pioglitazone improves left ventricular diastolic function and decreases collagen accumulation in prediabetic stage of a type II diabetic rat. J Cardiovasc Pharmacol 38:868–874CrossRef
29.
go back to reference Mathew P, John L, Jose J, Krishnaswami S (1992) Assessment of left ventricular diastolic function in young diabetics—a two dimensional echo Doppler study. Indian Heart J 44:29–32 Mathew P, John L, Jose J, Krishnaswami S (1992) Assessment of left ventricular diastolic function in young diabetics—a two dimensional echo Doppler study. Indian Heart J 44:29–32
30.
go back to reference Astorri E, Fiorina P, Contini GA et al. (1997) Isolated and preclinical impairment of left ventricular filling in insulin-dependent and non-insulin-dependent diabetic patients. Clin Cardiol 20:536–540 Astorri E, Fiorina P, Contini GA et al. (1997) Isolated and preclinical impairment of left ventricular filling in insulin-dependent and non-insulin-dependent diabetic patients. Clin Cardiol 20:536–540
31.
go back to reference Ren J, Dominguez LJ, Sowers JR, Davidoff AJ (1999) Metformin but not glyburide prevents high glucose-induced abnormalities in relaxation and intracellular Ca2+ transients in adult rat ventricular myocytes. Diabetes 48:2059–2065 Ren J, Dominguez LJ, Sowers JR, Davidoff AJ (1999) Metformin but not glyburide prevents high glucose-induced abnormalities in relaxation and intracellular Ca2+ transients in adult rat ventricular myocytes. Diabetes 48:2059–2065
32.
go back to reference Jyothirmayi GN, Soni BJ, Masurekar M, Lyons M, Regan TJ (1998) Effects of metformin on collagen glycation and diastolic dysfunction in diabetic myocardium. J Cardiovasc Pharmacol Ther 3:319–326 Jyothirmayi GN, Soni BJ, Masurekar M, Lyons M, Regan TJ (1998) Effects of metformin on collagen glycation and diastolic dysfunction in diabetic myocardium. J Cardiovasc Pharmacol Ther 3:319–326
33.
go back to reference Morel Y, Golay A, Perneger T et al. (1999) Metformin treatment leads to an increase in basal, but not insulin-stimulated, glucose disposal in obese patients with impaired glucose tolerance. Diabet Med 16:650–655CrossRef Morel Y, Golay A, Perneger T et al. (1999) Metformin treatment leads to an increase in basal, but not insulin-stimulated, glucose disposal in obese patients with impaired glucose tolerance. Diabet Med 16:650–655CrossRef
34.
go back to reference Gudbjornsdottir S, Friberg P, Elam M, Attvall S, Lonnroth P, Wallin BG (1994) The effect of metformin and insulin on sympathetic nerve activity, norepinephrine spillover and blood pressure in obese, insulin resistant, normoglycemic, hypertensive men. Blood Press 3:394–403PubMed Gudbjornsdottir S, Friberg P, Elam M, Attvall S, Lonnroth P, Wallin BG (1994) The effect of metformin and insulin on sympathetic nerve activity, norepinephrine spillover and blood pressure in obese, insulin resistant, normoglycemic, hypertensive men. Blood Press 3:394–403PubMed
Metadata
Title
Determinants of subclinical diabetic heart disease
Authors
Z. Y. Fang
R. Schull-Meade
M. Downey
J. Prins
T. H. Marwick
Publication date
01-02-2005
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 2/2005
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-004-1632-z

Other articles of this Issue 2/2005

Diabetologia 2/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.