Skip to main content
Top
Published in: Strahlentherapie und Onkologie 8/2020

Open Access 01-08-2020 | Radiotherapy | Original Article

First prospective clinical evaluation of feasibility and patient acceptance of magnetic resonance-guided radiotherapy in Germany

Authors: Sebastian Klüter, Sonja Katayama, C. Katharina Spindeldreier, Stefan A. Koerber, Gerald Major, Markus Alber, Sati Akbaba, Jürgen Debus, PD Dr. Juliane Hörner-Rieber

Published in: Strahlentherapie und Onkologie | Issue 8/2020

Login to get access

Abstract

Purpose

Magnetic resonance-guided radiotherapy (MRgRT) has recently been introduced in our institution. As MRgRT requires high patient compliance compared to conventional techniques and can be associated with prolonged treatment times, feasibility and patient tolerance were prospectively assessed using patient-reported outcome questionnaires (PRO-Q).

Materials and methods

Forty-three patients were enrolled in a prospective observational study and treated with MRgRT on a low-field hybrid Magnetic Resonance Linear Accelerator system (MR-Linac) between April 2018 and April 2019. For assistance in gated breath-hold delivery using cine-MRI, a video feedback system was installed. PRO-Qs consisted of questions on MR-related complaints and also assessed aspects of active patient participation.

Results

The most commonly treated anatomic sites were nodal metastases and liver lesions. The mean treatment time was 34 min with a mean beam-on time of 2:17 min. Gated stereotactic body radiotherapy (SBRT) was applied in 47% of all patients. Overall, patients scored MRgRT as positive or at least tolerable in the PRO‑Q. Almost two thirds of patients (65%) complained about at least one item of the PRO‑Q (score ≥4), mainly concerning coldness, paresthesia, and uncomfortable positioning. All patients reported high levels of satisfaction with their active role using the video feedback system in breath-hold delivery.

Conclusion

MRgRT was successfully implemented in our clinic and well tolerated by all patients, despite MR-related complaints and complaints about uncomfortable immobilization. Prospective clinical studies are in development for further evaluation of MRgRT and for quantification of the benefit of MR-guided on-table adaptive radiotherapy.
Literature
1.
go back to reference Jaffray DA (2012) Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 9(12):688–699PubMedCrossRef Jaffray DA (2012) Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 9(12):688–699PubMedCrossRef
3.
go back to reference Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 7(10):848–858PubMedCrossRef Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 7(10):848–858PubMedCrossRef
4.
go back to reference Noel CE et al (2015) Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol 54(9):1474–1482PubMedCrossRef Noel CE et al (2015) Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol 54(9):1474–1482PubMedCrossRef
5.
go back to reference Jones KM et al (2018) Emerging magnetic resonance imaging technologies for radiation therapy planning and response assessment. Int J Radiat Oncol Biol Phys 101(5):1046–1056PubMedCrossRef Jones KM et al (2018) Emerging magnetic resonance imaging technologies for radiation therapy planning and response assessment. Int J Radiat Oncol Biol Phys 101(5):1046–1056PubMedCrossRef
6.
go back to reference Kashani R, Olsen JR (2018) Magnetic resonance imaging for target delineation and daily treatment modification. Semin Radiat Oncol 28(3):178–184PubMedCrossRef Kashani R, Olsen JR (2018) Magnetic resonance imaging for target delineation and daily treatment modification. Semin Radiat Oncol 28(3):178–184PubMedCrossRef
7.
go back to reference Bostel T et al (2014) MR-guidance—a clinical study to evaluate a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 9(1):12PubMedPubMedCentralCrossRef Bostel T et al (2014) MR-guidance—a clinical study to evaluate a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 9(1):12PubMedPubMedCentralCrossRef
8.
go back to reference Jaffray DA et al (2014) A facility for magnetic resonance–guided radiation therapy. Semin Radiat Oncol 24(3):193–195PubMedCrossRef Jaffray DA et al (2014) A facility for magnetic resonance–guided radiation therapy. Semin Radiat Oncol 24(3):193–195PubMedCrossRef
9.
go back to reference Karlsson M et al (2009) Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys 74(2):644–651PubMedCrossRef Karlsson M et al (2009) Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys 74(2):644–651PubMedCrossRef
10.
go back to reference Bostel T et al (2018) Prospective feasibility analysis of a novel off-line approach for MR-guided radiotherapy. Strahlenther Onkol 194(5):425–434PubMedCrossRef Bostel T et al (2018) Prospective feasibility analysis of a novel off-line approach for MR-guided radiotherapy. Strahlenther Onkol 194(5):425–434PubMedCrossRef
11.
go back to reference Fischer-Valuck BW et al (2017) Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system. Advances in Radiation Oncology 2(3):485–493PubMedPubMedCentralCrossRef Fischer-Valuck BW et al (2017) Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system. Advances in Radiation Oncology 2(3):485–493PubMedPubMedCentralCrossRef
12.
go back to reference Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance–guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199PubMedCrossRef Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance–guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199PubMedCrossRef
13.
go back to reference Raaymakers BW et al (2017) First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol 62(23):L41–L50PubMedCrossRef Raaymakers BW et al (2017) First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol 62(23):L41–L50PubMedCrossRef
17.
go back to reference van Sörnsen de Koste JR et al (2018) MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys 102(4):858–866PubMedCrossRef van Sörnsen de Koste JR et al (2018) MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys 102(4):858–866PubMedCrossRef
18.
go back to reference Henke LE et al (2018) Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): A 4.5-year clinical experience. Clin Oncol 30(11):720–727CrossRef Henke LE et al (2018) Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): A 4.5-year clinical experience. Clin Oncol 30(11):720–727CrossRef
19.
go back to reference Liney GP et al (2018) MRI-linear accelerator radiotherapy systems. Clin Oncol 30(11):686–691CrossRef Liney GP et al (2018) MRI-linear accelerator radiotherapy systems. Clin Oncol 30(11):686–691CrossRef
20.
go back to reference Kim J‑i et al (2017) Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy. Med Phys 44(9):4838–4846PubMedCrossRef Kim J‑i et al (2017) Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy. Med Phys 44(9):4838–4846PubMedCrossRef
21.
22.
go back to reference Botman R et al (2019) The clinical introduction of MR-guided radiation therapy from a RTT perspective. Clinical and Translational Radiation Oncology 18:140–145PubMedPubMedCentralCrossRef Botman R et al (2019) The clinical introduction of MR-guided radiation therapy from a RTT perspective. Clinical and Translational Radiation Oncology 18:140–145PubMedPubMedCentralCrossRef
23.
go back to reference Dewey M, Schink T, Dewey CF (2007) Claustrophobia during magnetic resonance imaging: Cohort study in over 55,000 patients. J Magn Reson Imaging 26(5):1322–1327PubMedCrossRef Dewey M, Schink T, Dewey CF (2007) Claustrophobia during magnetic resonance imaging: Cohort study in over 55,000 patients. J Magn Reson Imaging 26(5):1322–1327PubMedCrossRef
24.
go back to reference Munn Z et al (2015) Claustrophobia in magnetic resonance imaging: a systematic review and meta-analysis. Radiography 21(2):e59–e63CrossRef Munn Z et al (2015) Claustrophobia in magnetic resonance imaging: a systematic review and meta-analysis. Radiography 21(2):e59–e63CrossRef
25.
26.
go back to reference Tetar S et al (2018) Patient-reported outcome measurements on the tolerance of magnetic resonance imaging-guided radiation therapy. Cureus 10(e2236):2 Tetar S et al (2018) Patient-reported outcome measurements on the tolerance of magnetic resonance imaging-guided radiation therapy. Cureus 10(e2236):2
27.
go back to reference Yang LY et al (2018) Patient-reported outcome use in oncology: a systematic review of the impact on patient-clinician communication. Support Care Cancer 26(1):41–60PubMedCrossRef Yang LY et al (2018) Patient-reported outcome use in oncology: a systematic review of the impact on patient-clinician communication. Support Care Cancer 26(1):41–60PubMedCrossRef
28.
go back to reference Munn Z, Jordan Z (2011) The patient experience of high technology medical imaging: a systematic review of the qualitative evidence. Radiography 17(4):323–331CrossRef Munn Z, Jordan Z (2011) The patient experience of high technology medical imaging: a systematic review of the qualitative evidence. Radiography 17(4):323–331CrossRef
29.
go back to reference Tijssen RHN et al (2019) MRI commissioning of 1.5T MR-linac systems—a multi-institutional study. Radiother Oncol 132:114–120PubMedCrossRef Tijssen RHN et al (2019) MRI commissioning of 1.5T MR-linac systems—a multi-institutional study. Radiother Oncol 132:114–120PubMedCrossRef
30.
go back to reference Lamb JM et al (2017) Dosimetric validation of a magnetic resonance image gated radiotherapy system using a motion phantom and radiochromic film. J Appl Clin Med Phys 18(3):163–169PubMedPubMedCentralCrossRef Lamb JM et al (2017) Dosimetric validation of a magnetic resonance image gated radiotherapy system using a motion phantom and radiochromic film. J Appl Clin Med Phys 18(3):163–169PubMedPubMedCentralCrossRef
33.
go back to reference Lamb J et al (2017) Online adaptive radiation therapy: implementation of a new process of care. Cureus 9(8):e1618PubMedPubMedCentral Lamb J et al (2017) Online adaptive radiation therapy: implementation of a new process of care. Cureus 9(8):e1618PubMedPubMedCentral
34.
go back to reference Hunt A et al (2018) Adaptive radiotherapy enabled by MRI guidance. Clin Oncol 30(11):711–719CrossRef Hunt A et al (2018) Adaptive radiotherapy enabled by MRI guidance. Clin Oncol 30(11):711–719CrossRef
35.
go back to reference Boldrini L et al (2019) Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiat Oncol 14(1):71PubMedPubMedCentralCrossRef Boldrini L et al (2019) Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiat Oncol 14(1):71PubMedPubMedCentralCrossRef
36.
go back to reference Bohoudi O et al (2017) Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother Oncol 125(3):439–444PubMedCrossRef Bohoudi O et al (2017) Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother Oncol 125(3):439–444PubMedCrossRef
37.
38.
go back to reference Bohoudi O et al (2019) Identification of patients with locally advanced pancreatic cancer benefitting from plan adaptation in MR-guided radiation therapy. Radiother Oncol 132:16–22PubMedCrossRef Bohoudi O et al (2019) Identification of patients with locally advanced pancreatic cancer benefitting from plan adaptation in MR-guided radiation therapy. Radiother Oncol 132:16–22PubMedCrossRef
39.
go back to reference Henke LE et al (2018) In Silico trial of MR-guided midtreatment adaptive planning for hypofractionated stereotactic radiation therapy in centrally located thoracic tumors. Int J Radiat Oncol Biol Phys 102(4):987–995PubMedCrossRef Henke LE et al (2018) In Silico trial of MR-guided midtreatment adaptive planning for hypofractionated stereotactic radiation therapy in centrally located thoracic tumors. Int J Radiat Oncol Biol Phys 102(4):987–995PubMedCrossRef
40.
go back to reference Henke L et al (2016) Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages. Int J Radiat Oncol Biol Phys 96(5):1078–1086PubMedPubMedCentralCrossRef Henke L et al (2016) Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages. Int J Radiat Oncol Biol Phys 96(5):1078–1086PubMedPubMedCentralCrossRef
41.
go back to reference Palacios MA et al (2018) Role of daily plan adaptation in MR-guided stereotactic ablative radiation therapy for adrenal metastases. Int J Radiat Oncol Biol Phys 102(2):426–433PubMedCrossRef Palacios MA et al (2018) Role of daily plan adaptation in MR-guided stereotactic ablative radiation therapy for adrenal metastases. Int J Radiat Oncol Biol Phys 102(2):426–433PubMedCrossRef
42.
go back to reference Werensteijn-Honingh AM et al (2019) Feasibility of stereotactic radiotherapy using a 1.5T MR-linac: Multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol 134:50–54PubMedCrossRef Werensteijn-Honingh AM et al (2019) Feasibility of stereotactic radiotherapy using a 1.5T MR-linac: Multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol 134:50–54PubMedCrossRef
43.
go back to reference Henke LE et al (2019) Stereotactic MR-guided online adaptive radiation therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial. Advances in Radiation Oncology 4(1):201–209PubMedCrossRef Henke LE et al (2019) Stereotactic MR-guided online adaptive radiation therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial. Advances in Radiation Oncology 4(1):201–209PubMedCrossRef
44.
go back to reference Rosenberg SA et al (2019) A Multi-Institutional Experience of MR-Guided Liver Stereotactic Body Radiation Therapy. Advances in Radiation Oncology 4(1):142–149PubMedCrossRef Rosenberg SA et al (2019) A Multi-Institutional Experience of MR-Guided Liver Stereotactic Body Radiation Therapy. Advances in Radiation Oncology 4(1):142–149PubMedCrossRef
Metadata
Title
First prospective clinical evaluation of feasibility and patient acceptance of magnetic resonance-guided radiotherapy in Germany
Authors
Sebastian Klüter
Sonja Katayama
C. Katharina Spindeldreier
Stefan A. Koerber
Gerald Major
Markus Alber
Sati Akbaba
Jürgen Debus
PD Dr. Juliane Hörner-Rieber
Publication date
01-08-2020
Publisher
Springer Berlin Heidelberg
Keyword
Radiotherapy
Published in
Strahlentherapie und Onkologie / Issue 8/2020
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-020-01578-z

Other articles of this Issue 8/2020

Strahlentherapie und Onkologie 8/2020 Go to the issue