Skip to main content
Top
Published in: Strahlentherapie und Onkologie 2/2019

01-02-2019 | Original Article

Penile bulb sparing in prostate cancer radiotherapy

Dose analysis of an in-house MRI system to improve contouring

Authors: F. Böckelmann, M. Hammon, S. Lettmaier, R. Fietkau, Prof. Dr. C. Bert, F. Putz

Published in: Strahlentherapie und Onkologie | Issue 2/2019

Login to get access

Abstract

Objective

This study aimed to assess the reduction in dose to the penile bulb (PB) achieved by MRI-based contouring following drinking and endorectal balloon (ERB) instructions.

Patients and methods

A total of 17 prostate cancer patients were treated with intensity-modulated radiation therapy (IMRT) and interstitial brachytherapy (IBT). CT and MRI datasets were acquired back-to-back based on a 65 cm3 air-filled ERB and drinking instructions. After rigid co-registration of the imaging data, the CT-based planning target volume (PTV) used for treatment planning was retrospectively compared to an MRI-based adaptive PTV and the dose to the PB was determined in each case. The adapted PTV encompassed a caudally cropped CT-based PTV which was defined on the basis of the MRI-based prostate contour plus an additional 5 mm safety margin.

Results

In the seven-field IMRT treatment plans, the MRI-based adapted PTV achieved mean (Dmean) and maximum (Dmax) doses to the PB which were significantly lower (by 7.6 Gy and 10.9 Gy, respectively; p <0.05) than those of the CT-contoured PTV. For 6 patients, the estimated PB Dmax (seven-field IMRT and IBT) for the adapted PTV was <70 Gy, whereas only 1 patient fulfilled this criterium with the CT-based PTV.

Conclusion

MRI-based contouring and seven-field IMRT-based treatment planning achieved dose sparing to the PB. Whereas the comparison of MRI and CT contouring only relates to external beam radiotherapy (EBRT) sparing, considering EBRT and IBT shows the improvement in PB sparing for the total treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wallner KE, Merrick GS, Benson ML et al (2002) Penile bulb imaging. Int J Radiat Oncol Biol Phys 53:928–933CrossRefPubMed Wallner KE, Merrick GS, Benson ML et al (2002) Penile bulb imaging. Int J Radiat Oncol Biol Phys 53:928–933CrossRefPubMed
2.
go back to reference Roach M (2005) Is it time to change the standard of care from CT to MRI for defining the apex of the prostate to accomplish potency-sparing radiotherapy? Int J Radiat Oncol Biol Phys 61:1–2CrossRefPubMed Roach M (2005) Is it time to change the standard of care from CT to MRI for defining the apex of the prostate to accomplish potency-sparing radiotherapy? Int J Radiat Oncol Biol Phys 61:1–2CrossRefPubMed
3.
go back to reference McLaughlin PW, Narayana V, Meriowitz A et al (2005) Vessel-sparing prostate radiotherapy: Dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys 61:20–31CrossRefPubMed McLaughlin PW, Narayana V, Meriowitz A et al (2005) Vessel-sparing prostate radiotherapy: Dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys 61:20–31CrossRefPubMed
4.
go back to reference Roach M, Nam J, Gagliardi G et al (2010) Radiation dose-volume effects and the penile bulb. Int J Radiat Oncol Biol Phys 76:130–134CrossRef Roach M, Nam J, Gagliardi G et al (2010) Radiation dose-volume effects and the penile bulb. Int J Radiat Oncol Biol Phys 76:130–134CrossRef
5.
go back to reference van der Wielen GJ, Hoogeman MS, Dohle GR et al (2008) Dose-volume parameters of the corpora Cavernosa do not correlate with erectile dysfunction after external beam radiotherapy for prostate cancer: results from a dose-escalation trial. Int J Radiat Oncol Biol Phys 71:795–800CrossRefPubMed van der Wielen GJ, Hoogeman MS, Dohle GR et al (2008) Dose-volume parameters of the corpora Cavernosa do not correlate with erectile dysfunction after external beam radiotherapy for prostate cancer: results from a dose-escalation trial. Int J Radiat Oncol Biol Phys 71:795–800CrossRefPubMed
6.
go back to reference Perna L, Fiorino C, Cozzarini C et al (2009) Sparing the penile bulb in the radical irradiation of clinically localised prostate carcinoma: a comparison between MRI and CT prostatic apex definition in 3DCRT, linac-IMRT and helical Tomotherapy. Radiother Oncol 93:57–63CrossRefPubMed Perna L, Fiorino C, Cozzarini C et al (2009) Sparing the penile bulb in the radical irradiation of clinically localised prostate carcinoma: a comparison between MRI and CT prostatic apex definition in 3DCRT, linac-IMRT and helical Tomotherapy. Radiother Oncol 93:57–63CrossRefPubMed
7.
go back to reference Cozzarini C, Rancati T, Badenchini F et al (2016) Baseline-Status und Dosis auf den Bulbus penis als Prädiktoren für Impotenz ein Jahr nach Radiotherapie bei Prostatakrebs. Strahlenther Onkol 192:297–304CrossRefPubMed Cozzarini C, Rancati T, Badenchini F et al (2016) Baseline-Status und Dosis auf den Bulbus penis als Prädiktoren für Impotenz ein Jahr nach Radiotherapie bei Prostatakrebs. Strahlenther Onkol 192:297–304CrossRefPubMed
8.
go back to reference Milosevic M, Voruganti S, Blend R et al (1998) Magnetic resonance imaging (MRI) for localization of the prostatic apex: comparison to computed tomography (CT) and urethrography. Radiother Oncol 47:277–284CrossRefPubMed Milosevic M, Voruganti S, Blend R et al (1998) Magnetic resonance imaging (MRI) for localization of the prostatic apex: comparison to computed tomography (CT) and urethrography. Radiother Oncol 47:277–284CrossRefPubMed
9.
go back to reference Seppälä T, Visapää H, Collan J et al (2015) Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer. Strahlenther Onkol 1:7 Seppälä T, Visapää H, Collan J et al (2015) Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer. Strahlenther Onkol 1:7
10.
go back to reference Kapanen M, Collan J, Beule A et al (2013) Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med 70:127–135CrossRefPubMed Kapanen M, Collan J, Beule A et al (2013) Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med 70:127–135CrossRefPubMed
11.
go back to reference Buyyounouski MK, Horwitz EM, Uzzo RG et al (2004) The radiation doses to erectile tissues defined with magnetic resonance imaging after intensity-modulated radiation therapy or iodine-125 brachytherapy. Int J Radiat Oncol Biol Phys 59:1383–1391CrossRefPubMed Buyyounouski MK, Horwitz EM, Uzzo RG et al (2004) The radiation doses to erectile tissues defined with magnetic resonance imaging after intensity-modulated radiation therapy or iodine-125 brachytherapy. Int J Radiat Oncol Biol Phys 59:1383–1391CrossRefPubMed
12.
go back to reference Maggio A, Gabriele D, Garibaldi E et al (2017) Impact of a rectal and bladder preparation protocol on prostate cancer outcome in patients treated with external beam radiotherapy. Strahlenther Onkol 193:722–732CrossRefPubMed Maggio A, Gabriele D, Garibaldi E et al (2017) Impact of a rectal and bladder preparation protocol on prostate cancer outcome in patients treated with external beam radiotherapy. Strahlenther Onkol 193:722–732CrossRefPubMed
13.
go back to reference D’Amico AV, Manola J, Loffredo M et al (2001) A practical method to achieve prostate gland immobilization and target verification for daily treatment. Int J Radiat Oncol Biol Phys 51:1431–1436CrossRefPubMed D’Amico AV, Manola J, Loffredo M et al (2001) A practical method to achieve prostate gland immobilization and target verification for daily treatment. Int J Radiat Oncol Biol Phys 51:1431–1436CrossRefPubMed
14.
go back to reference Smeenk RJ, Louwe RJ, Langen KM et al (2012) An endorectal balloon reduces intrafraction prostate motion during radiotherapy. Int J Radiat Oncol Biol Phys 83:661–669CrossRefPubMed Smeenk RJ, Louwe RJ, Langen KM et al (2012) An endorectal balloon reduces intrafraction prostate motion during radiotherapy. Int J Radiat Oncol Biol Phys 83:661–669CrossRefPubMed
15.
go back to reference Steiner E, Georg D, Goldner G et al (2013) Prostate and patient intrafraction motion: impact on treatment time-dependent planning margins for patients with endorectal balloon. Int J Radiat Oncol Biol Phys 86:755–761CrossRefPubMed Steiner E, Georg D, Goldner G et al (2013) Prostate and patient intrafraction motion: impact on treatment time-dependent planning margins for patients with endorectal balloon. Int J Radiat Oncol Biol Phys 86:755–761CrossRefPubMed
16.
go back to reference Teh BS, Woo SY, Mai WY et al (2002) Clinical experience with intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of rectal balloon for prostate immobilization. Med Dosim 27:105–113CrossRefPubMed Teh BS, Woo SY, Mai WY et al (2002) Clinical experience with intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of rectal balloon for prostate immobilization. Med Dosim 27:105–113CrossRefPubMed
17.
go back to reference Wang KK, Vapiwala N, Deville C et al (2012) A study to quantify the effectiveness of daily endorectal balloon for prostate intrafraction motion management. Int J Radiat Oncol Biol Phys 83:1055–1063CrossRefPubMed Wang KK, Vapiwala N, Deville C et al (2012) A study to quantify the effectiveness of daily endorectal balloon for prostate intrafraction motion management. Int J Radiat Oncol Biol Phys 83:1055–1063CrossRefPubMed
18.
go back to reference Hartmann J, Gellermann J, Brandt T et al (2016) Optimization of single Voxel MR spectroscopy sequence parameters and data analysis methods for thermometry in deep Hyperthermia treatments. Technol Cancer Res Treat 44213:1–30 Hartmann J, Gellermann J, Brandt T et al (2016) Optimization of single Voxel MR spectroscopy sequence parameters and data analysis methods for thermometry in deep Hyperthermia treatments. Technol Cancer Res Treat 44213:1–30
19.
go back to reference Fransson A, Andreo P, Pötter R (2001) Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol 177:59–73CrossRefPubMed Fransson A, Andreo P, Pötter R (2001) Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol 177:59–73CrossRefPubMed
20.
go back to reference Schneider E, NessAiver M (2013) The Osteoarthritis Initiative (OAI) magnetic resonance imaging quality assurance update. Osteoarthr Cartil 21:110–116CrossRefPubMed Schneider E, NessAiver M (2013) The Osteoarthritis Initiative (OAI) magnetic resonance imaging quality assurance update. Osteoarthr Cartil 21:110–116CrossRefPubMed
21.
go back to reference Roach M, Hanks G, Thames H et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974CrossRefPubMed Roach M, Hanks G, Thames H et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974CrossRefPubMed
22.
go back to reference Jorgo K, Agoston P, Major T et al (2017) Transperineal gold marker implantation for image-guided external beam radiotherapy of prostate cancer : a single institution, prospective study. Strahlenther Onkol 193:452–458CrossRefPubMed Jorgo K, Agoston P, Major T et al (2017) Transperineal gold marker implantation for image-guided external beam radiotherapy of prostate cancer : a single institution, prospective study. Strahlenther Onkol 193:452–458CrossRefPubMed
23.
go back to reference Nyholm T, Nyberg M, Karlsson MGM et al (2009) Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. Radiat Oncol 4:54CrossRefPubMedPubMedCentral Nyholm T, Nyberg M, Karlsson MGM et al (2009) Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. Radiat Oncol 4:54CrossRefPubMedPubMedCentral
24.
go back to reference Roberson PL, McLaughlin PW, Narayana V et al (2005) Use and uncertainties of mutual information for computed tomography/magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys 32:473–482CrossRefPubMed Roberson PL, McLaughlin PW, Narayana V et al (2005) Use and uncertainties of mutual information for computed tomography/magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys 32:473–482CrossRefPubMed
25.
go back to reference Lettmaier S, Lotter M, Kreppner S et al (2012) Long term results of a prospective dose escalation phase-II trial: interstitial pulsed-dose-rate brachytherapy as boost for intermediate- and high-risk prostate cancer. Radiother Oncol 104:181–186CrossRefPubMed Lettmaier S, Lotter M, Kreppner S et al (2012) Long term results of a prospective dose escalation phase-II trial: interstitial pulsed-dose-rate brachytherapy as boost for intermediate- and high-risk prostate cancer. Radiother Oncol 104:181–186CrossRefPubMed
26.
go back to reference Both S, Wang KK, Plastaras JP et al (2011) Real-time study of prostate intrafraction motion during external beam radiotherapy with daily endorectal balloon. Int J Radiat Oncol Biol Phys 81:1302–1309CrossRefPubMed Both S, Wang KK, Plastaras JP et al (2011) Real-time study of prostate intrafraction motion during external beam radiotherapy with daily endorectal balloon. Int J Radiat Oncol Biol Phys 81:1302–1309CrossRefPubMed
27.
go back to reference Oehler C, Lang S, Dimmerling P et al (2014) PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol 9:229CrossRefPubMedPubMedCentral Oehler C, Lang S, Dimmerling P et al (2014) PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol 9:229CrossRefPubMedPubMedCentral
29.
go back to reference Dolezel M, Odrazka K, Zouhar M et al (2015) Comparing morbidity and cancer control after 3D-conformal (70/74 Gy) and intensity modulated radiotherapy (78/82 Gy) for prostate cancer. Strahlenther Onkol 191:338–346CrossRefPubMed Dolezel M, Odrazka K, Zouhar M et al (2015) Comparing morbidity and cancer control after 3D-conformal (70/74 Gy) and intensity modulated radiotherapy (78/82 Gy) for prostate cancer. Strahlenther Onkol 191:338–346CrossRefPubMed
30.
go back to reference Guckenberger M, Lawrenz I, Flentje M (2014) Moderately hypofractionated radiotherapy for localized prostate cancer: long-term outcome using IMRT and volumetric IGRT. Strahlenther Onkol 190:48–53CrossRefPubMed Guckenberger M, Lawrenz I, Flentje M (2014) Moderately hypofractionated radiotherapy for localized prostate cancer: long-term outcome using IMRT and volumetric IGRT. Strahlenther Onkol 190:48–53CrossRefPubMed
31.
go back to reference Buyyounouski MK, Horwitz EM, Price RA et al (2004) Intensity-modulated radiotherapy with mri simulation to reduce doses received by erectile tissue during prostate cancer treatment. Int J Radiat Oncol Biol Phys 58:743–749CrossRefPubMed Buyyounouski MK, Horwitz EM, Price RA et al (2004) Intensity-modulated radiotherapy with mri simulation to reduce doses received by erectile tissue during prostate cancer treatment. Int J Radiat Oncol Biol Phys 58:743–749CrossRefPubMed
32.
go back to reference Kao J, Turian J, Meyers A et al (2004) Sparing of the penile bulb and proximal penile structures with intensity-modulated radiation therapy for prostate cancer. Br J Radiol 77:129–136CrossRefPubMed Kao J, Turian J, Meyers A et al (2004) Sparing of the penile bulb and proximal penile structures with intensity-modulated radiation therapy for prostate cancer. Br J Radiol 77:129–136CrossRefPubMed
33.
go back to reference Sethi A, Mohideen N, Leybovich L et al (2003) Role of IMRT in reducing penile doses in dose escalation for prostate cancer. Int J Radiat Oncol Biol Phys 55:970–978CrossRefPubMed Sethi A, Mohideen N, Leybovich L et al (2003) Role of IMRT in reducing penile doses in dose escalation for prostate cancer. Int J Radiat Oncol Biol Phys 55:970–978CrossRefPubMed
34.
go back to reference Selek U, Cheung R, Lii M et al (2004) Erectile dysfunction and radiation dose to penile base structures: a lack of correlation. Int J Radiat Oncol Biol Phys 59:1039–1046CrossRefPubMed Selek U, Cheung R, Lii M et al (2004) Erectile dysfunction and radiation dose to penile base structures: a lack of correlation. Int J Radiat Oncol Biol Phys 59:1039–1046CrossRefPubMed
35.
go back to reference Mangar SA, Sydes MR, Tucker HL et al (2006) Evaluating the relationship between erectile dysfunction and dose received by the penile bulb: Using data from a randomised controlled trial of conformal radiotherapy in prostate cancer (MRC RT01, ISRCTN47772397). Radiother Oncol 80:355–362CrossRefPubMed Mangar SA, Sydes MR, Tucker HL et al (2006) Evaluating the relationship between erectile dysfunction and dose received by the penile bulb: Using data from a randomised controlled trial of conformal radiotherapy in prostate cancer (MRC RT01, ISRCTN47772397). Radiother Oncol 80:355–362CrossRefPubMed
36.
go back to reference Wernicke AG, Valicenti R, DiEva K et al (2004) Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 60:1357–1363CrossRefPubMed Wernicke AG, Valicenti R, DiEva K et al (2004) Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 60:1357–1363CrossRefPubMed
37.
go back to reference Roach M, Winter K, Michalski JM et al (2004) Penile bulb dose and impotence after three-dimensional conformal radiotherapy for prostate cancer on RTOG 9406: Findings from a prospective, multi-institutional, phase I/II dose-escalation study. Int J Radiat Oncol Biol Phys 60:1351–1356CrossRefPubMed Roach M, Winter K, Michalski JM et al (2004) Penile bulb dose and impotence after three-dimensional conformal radiotherapy for prostate cancer on RTOG 9406: Findings from a prospective, multi-institutional, phase I/II dose-escalation study. Int J Radiat Oncol Biol Phys 60:1351–1356CrossRefPubMed
38.
go back to reference Fisch BM, Pickett B, Weinberg V et al (2001) Dose of radiation received by the bulb of the penis correlates with risk of impotence after three-dimensional conformal radiotherapy for prostate cancer. Urology 57:955–959CrossRefPubMed Fisch BM, Pickett B, Weinberg V et al (2001) Dose of radiation received by the bulb of the penis correlates with risk of impotence after three-dimensional conformal radiotherapy for prostate cancer. Urology 57:955–959CrossRefPubMed
39.
go back to reference D’Amico a V, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974CrossRefPubMed D’Amico a V, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974CrossRefPubMed
40.
go back to reference Schröder FH, Hermanek P, Denis L et al (1992) The TNM classification of prostate cancer. Prostate Suppl 4:129–138CrossRefPubMed Schröder FH, Hermanek P, Denis L et al (1992) The TNM classification of prostate cancer. Prostate Suppl 4:129–138CrossRefPubMed
41.
go back to reference Gleason DF (1990) Histologic grading of prostate cancer. Pathology of the prostate. Bostwick, New York, Churchill Livingstone, pp 83–93 Gleason DF (1990) Histologic grading of prostate cancer. Pathology of the prostate. Bostwick, New York, Churchill Livingstone, pp 83–93
42.
go back to reference Davids M, Zöllner FG, Ruttorf M et al (2014) Fully-automated quality assurance in multi-center studies using MRI phantom measurements. Magn Reson Imaging 32:771–780CrossRefPubMed Davids M, Zöllner FG, Ruttorf M et al (2014) Fully-automated quality assurance in multi-center studies using MRI phantom measurements. Magn Reson Imaging 32:771–780CrossRefPubMed
Metadata
Title
Penile bulb sparing in prostate cancer radiotherapy
Dose analysis of an in-house MRI system to improve contouring
Authors
F. Böckelmann
M. Hammon
S. Lettmaier
R. Fietkau
Prof. Dr. C. Bert
F. Putz
Publication date
01-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 2/2019
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-018-1377-0

Other articles of this Issue 2/2019

Strahlentherapie und Onkologie 2/2019 Go to the issue