Skip to main content
Top
Published in: Strahlentherapie und Onkologie 10/2013

01-10-2013 | Original article

PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs

Authors: M. Rodriguez, J. Sempau, L. Brualla

Published in: Strahlentherapie und Onkologie | Issue 10/2013

Login to get access

Abstract

Background

The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used.

Methods

PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron applicators, is introduced. PRIMO combines (1) accurate physics from the PENELOPE code, (2) dedicated variance-reduction techniques that significantly reduce the computation time, and (3) a user-friendly graphical interface with tools for the analysis of the generated data. PRIMO can tally dose distributions in phantoms and computerized tomographies, handle phase-space files in IAEA format, and import structures (planning target volumes, organs at risk) in the DICOM RT-STRUCT standard.

Results

A prostate treatment, conformed with a high definition Millenium multileaf collimator (MLC 120HD) from a Varian Clinac 2100 C/D, is presented as an example. The computation of the dose distribution in 1.86 × 3.00 × 1.86 mm3 voxels with an average 2 % standard statistical uncertainty, performed on an eight-core Intel Xeon at 2.67 GHz, took 1.8 h—excluding the patient-independent part of the linac, which required 3.8 h but it is simulated only once.

Conclusion

PRIMO is a self-contained user-friendly system that facilitates the Monte Carlo simulation of dose distributions produced by most currently available linacs. This opens the door for routine use of Monte Carlo in clinical research and quality assurance purposes. It is free software that can be downloaded from http://www.primoproject.net.
Literature
1.
go back to reference Baró J, Sempau J, Fernández-Varea JM, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods B 100:31–46CrossRef Baró J, Sempau J, Fernández-Varea JM, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods B 100:31–46CrossRef
2.
go back to reference Brualla L, Palanco-Zamora R, Steuhl KP et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRef Brualla L, Palanco-Zamora R, Steuhl KP et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRef
3.
go back to reference Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma. Phys Med Biol 54:5469–5481PubMedCrossRef Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma. Phys Med Biol 54:5469–5481PubMedCrossRef
4.
go back to reference Brualla L, Salvat F, Palanco-Zamora R (2009) Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol 54:4131–4149PubMedCrossRef Brualla L, Salvat F, Palanco-Zamora R (2009) Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol 54:4131–4149PubMedCrossRef
5.
go back to reference Brualla L, Sauerwein W (2010) On the efficiency of azimuthal and rotational splitting for Monte Carlo simulation of clinical linear accelerators. Rad Phys Chem 79:929–932CrossRef Brualla L, Sauerwein W (2010) On the efficiency of azimuthal and rotational splitting for Monte Carlo simulation of clinical linear accelerators. Rad Phys Chem 79:929–932CrossRef
6.
go back to reference Bueno G, Déniz O, Carrascosa CB et al (2009) Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36:5162–5174PubMedCrossRef Bueno G, Déniz O, Carrascosa CB et al (2009) Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36:5162–5174PubMedCrossRef
7.
go back to reference Capote R, Jeraj R, Ma CM et al (2006) Phase-space database for external beam radiotherapy. Report INDC(NDS)-0484. Vienna, Austria: International Atomic Energy Agency, Nuclear Data Section Capote R, Jeraj R, Ma CM et al (2006) Phase-space database for external beam radiotherapy. Report INDC(NDS)-0484. Vienna, Austria: International Atomic Energy Agency, Nuclear Data Section
8.
go back to reference Chetty I, Curran B, Cygler J, DeMarco J (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853PubMedCrossRef Chetty I, Curran B, Cygler J, DeMarco J (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853PubMedCrossRef
9.
go back to reference Fernández-Varea JM, Carrasco P, Panettieri V, Brualla L (2007) Monte Carlo based water/medium stopping power ratios for various ICRP and ICRU tissues. Phys Med Biol 52:6475–6483PubMedCrossRef Fernández-Varea JM, Carrasco P, Panettieri V, Brualla L (2007) Monte Carlo based water/medium stopping power ratios for various ICRP and ICRU tissues. Phys Med Biol 52:6475–6483PubMedCrossRef
10.
go back to reference Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23:445–457PubMedCrossRef Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23:445–457PubMedCrossRef
11.
go back to reference Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661PubMedCrossRef Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661PubMedCrossRef
12.
go back to reference Neuenschwander H, Mackie T, Reckwerdt P (1995) MMC—a high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543–574PubMedCrossRef Neuenschwander H, Mackie T, Reckwerdt P (1995) MMC—a high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543–574PubMedCrossRef
13.
go back to reference Reynaert N, Vandermarck S, Schaart D et al (2007) Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem 76:643–686CrossRef Reynaert N, Vandermarck S, Schaart D et al (2007) Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem 76:643–686CrossRef
14.
go back to reference Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 57:3013–3024PubMedCrossRef Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 57:3013–3024PubMedCrossRef
15.
go back to reference Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011—a code system for Monte Carlo simulation of electron and photon transport. Issy-les- Moulineaux, France: OECD Nuclear Energy Agency Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011—a code system for Monte Carlo simulation of electron and photon transport. Issy-les- Moulineaux, France: OECD Nuclear Energy Agency
16.
go back to reference Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods B 132:377–390CrossRef Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods B 132:377–390CrossRef
17.
go back to reference Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—application to far-from-axis fields. Med Phys 38:5887–5895PubMedCrossRef Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—application to far-from-axis fields. Med Phys 38:5887–5895PubMedCrossRef
18.
go back to reference Sempau J, Sánchez-Reyes A, Salvat F et al (2001) Monte Carlo simulation of electron beams from an accelerator head using PENELOPE. Phys Med Biol 46:1163–1186PubMedCrossRef Sempau J, Sánchez-Reyes A, Salvat F et al (2001) Monte Carlo simulation of electron beams from an accelerator head using PENELOPE. Phys Med Biol 46:1163–1186PubMedCrossRef
19.
go back to reference Sempau J, Wilderman S, Bielajew A (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291PubMedCrossRef Sempau J, Wilderman S, Bielajew A (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291PubMedCrossRef
20.
go back to reference Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosimetry 131:123–129PubMedCrossRef Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosimetry 131:123–129PubMedCrossRef
21.
go back to reference Zee W van der, Hogenbirk A, Marck S van der (2005) ORANGE: a Monte Carlo dose engine for radiotherapy. Phys Med Biol 50:625–641PubMedCrossRef Zee W van der, Hogenbirk A, Marck S van der (2005) ORANGE: a Monte Carlo dose engine for radiotherapy. Phys Med Biol 50:625–641PubMedCrossRef
Metadata
Title
PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs
Authors
M. Rodriguez
J. Sempau
L. Brualla
Publication date
01-10-2013
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 10/2013
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-013-0415-1

Other articles of this Issue 10/2013

Strahlentherapie und Onkologie 10/2013 Go to the issue