Skip to main content
Top
Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 6/2013

01-11-2013 | Original article

In vivo differentiation of human periodontal ligament cells leads to formation of dental hard tissue

Authors: Dr. M. Wolf, S. Lossdörfer, N. Abuduwali, R. Meyer, S. Kebir, W. Götz, A. Jäger

Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Issue 6/2013

Login to get access

Abstract

Objective

Following trauma, periodontal disease, or orthodontic tooth movement, residual periodontal ligament (PDL) cells at the defect site are considered mandatory for successful regeneration of the injured structures. Recent developments in tissue engineering focus, as one pillar, on the transplantation of PDL cells to support periodontal regeneration processes. Here, we examined the ability of osteogenically predifferentiated PDL cells to undergo further osteoblastic or cementoblastic differentiation and to mineralize their extracellular matrix when transplanted in an in vivo microenvironment.

Materials and methods

Using collagen sponges as carriers, osteogenically predifferentiated human PDL cells were transplanted subcutaneously into six immunocompromised CD-1® nude mice. Following explantation after 28 days, osteogenic and cementogenic marker protein expression was visualized immunohistochemically.

Results

After 28 days, transplanted PDL cells revealed both cellular, cytoplasmatic and extracellular immunoreactivity for the chosen markers alkaline phosphatase, osteopontin, PTH-receptor 1, and osteocalcin. Specific osteogenic and cementoblastic differentiation was demonstrated by RUNX2 and CEMP1 immunoreactivity. Early stages of mineralization were demonstrated by calcium and phosphate staining.

Conclusion

Our results reinforce the previously published reports of PDL cell mineralization in vivo and further demonstrate the successful induction of specific osteogenic and cementogenic differentiation of transplanted human PDL cells in vivo. These findings reveal promising possibilities for supporting periodontal remodeling and regeneration processes with PDL cells being potential target cells with which to influence the process of orthodontically induced root resorption.
Literature
1.
go back to reference Akizuki T, Oda S, Komaki M et al (2005) Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 40:245–251PubMedCrossRef Akizuki T, Oda S, Komaki M et al (2005) Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 40:245–251PubMedCrossRef
2.
go back to reference Artun J, Van’t Hullenaar R, Doppel D et al (2009) Identification of orthodontic patients at risk of severe apical root resorption. Am J Orthod Dentofacial Orthop 135:448–455PubMedCrossRef Artun J, Van’t Hullenaar R, Doppel D et al (2009) Identification of orthodontic patients at risk of severe apical root resorption. Am J Orthod Dentofacial Orthop 135:448–455PubMedCrossRef
3.
go back to reference Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:615–621PubMedCrossRef Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:615–621PubMedCrossRef
4.
go back to reference Brezniak N, Wasserstein A (2002) Orthodontically induced inflammatory root resorption. Part II: The clinical aspects. Angle Orthod 72:180–184PubMed Brezniak N, Wasserstein A (2002) Orthodontically induced inflammatory root resorption. Part II: The clinical aspects. Angle Orthod 72:180–184PubMed
5.
go back to reference Chen MY, Chen KL, Chen CA et al (2012) Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. Int Endod J 45:294–305PubMedCrossRef Chen MY, Chen KL, Chen CA et al (2012) Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. Int Endod J 45:294–305PubMedCrossRef
6.
go back to reference Chen SC, Marino V, Gronthos S et al (2006) Location of putative stem cells in human periodontal ligament. J Periodontal Res 41:547–553PubMedCrossRef Chen SC, Marino V, Gronthos S et al (2006) Location of putative stem cells in human periodontal ligament. J Periodontal Res 41:547–553PubMedCrossRef
7.
go back to reference Flores MG, Hasegawa M, Yamato M et al (2008) Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res 43:364–371PubMedCrossRef Flores MG, Hasegawa M, Yamato M et al (2008) Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res 43:364–371PubMedCrossRef
8.
go back to reference Itaya T, Kagami H, Okada K et al (2009) Characteristic changes of periodontal ligament-derived cells during passage. J Periodontal Res 44:425–433PubMedCrossRef Itaya T, Kagami H, Okada K et al (2009) Characteristic changes of periodontal ligament-derived cells during passage. J Periodontal Res 44:425–433PubMedCrossRef
9.
go back to reference Jo YY, Lee HJ, Kook SY et al (2007) Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 13:767–773PubMedCrossRef Jo YY, Lee HJ, Kook SY et al (2007) Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 13:767–773PubMedCrossRef
10.
go back to reference Kato-Kogoe N, Nishioka T, Kawabe M et al (2012) The promotional effect of IL-22 on mineralization activity of periodontal ligament cells. Cytokine 59:41–48PubMedCrossRef Kato-Kogoe N, Nishioka T, Kawabe M et al (2012) The promotional effect of IL-22 on mineralization activity of periodontal ligament cells. Cytokine 59:41–48PubMedCrossRef
11.
go back to reference Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469 e1–e32PubMedCrossRef Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469 e1–e32PubMedCrossRef
12.
go back to reference Kruzynska-Frejtag A, Wang J, Maeda M et al (2004) Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction. Dev Dyn 229:857–868PubMedCrossRef Kruzynska-Frejtag A, Wang J, Maeda M et al (2004) Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction. Dev Dyn 229:857–868PubMedCrossRef
13.
go back to reference Lang H, Schuler N, Nolden R (1998) Attachment formation following replantation of cultured cells into periodontal defects–a study in minipigs. J Dent Res 77:393–405PubMedCrossRef Lang H, Schuler N, Nolden R (1998) Attachment formation following replantation of cultured cells into periodontal defects–a study in minipigs. J Dent Res 77:393–405PubMedCrossRef
14.
go back to reference Leatherbarrow RJ (1990) Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci 15:455–458PubMedCrossRef Leatherbarrow RJ (1990) Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci 15:455–458PubMedCrossRef
15.
go back to reference Lekic PC, Rajshankar D, Chen H et al (2001) Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 262:193–202PubMedCrossRef Lekic PC, Rajshankar D, Chen H et al (2001) Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 262:193–202PubMedCrossRef
16.
go back to reference Lossdörfer S, Abuduwali N, Jäger A (2010) Bone morphogenetic protein-7 modifies the effects of insulin-like growth factors and intermittent parathyroid hormone(1–34) on human periodontal ligament cell physiology in vitro. J Periodontology 82:900–908CrossRef Lossdörfer S, Abuduwali N, Jäger A (2010) Bone morphogenetic protein-7 modifies the effects of insulin-like growth factors and intermittent parathyroid hormone(1–34) on human periodontal ligament cell physiology in vitro. J Periodontology 82:900–908CrossRef
17.
go back to reference Lossdorfer S, Gotz W, Jager A (2005) PTH(1–34) affects osteoprotegerin production in human PDL cells in vitro. J Dent Res 84:634–638PubMedCrossRef Lossdorfer S, Gotz W, Jager A (2005) PTH(1–34) affects osteoprotegerin production in human PDL cells in vitro. J Dent Res 84:634–638PubMedCrossRef
18.
go back to reference Lossdorfer S, Gotz W, Jager A (2011) PTH(1–34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells. Clin Oral Investig 15:941–952PubMedCrossRef Lossdorfer S, Gotz W, Jager A (2011) PTH(1–34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells. Clin Oral Investig 15:941–952PubMedCrossRef
19.
go back to reference Lossdorfer S, Kraus D, Jager A (2010) Aging affects the phenotypic characteristics of human periodontal ligament cells and the cellular response to hormonal stimulation in vitro. J Periodontal Res 45:764–771PubMedCrossRef Lossdorfer S, Kraus D, Jager A (2010) Aging affects the phenotypic characteristics of human periodontal ligament cells and the cellular response to hormonal stimulation in vitro. J Periodontal Res 45:764–771PubMedCrossRef
20.
go back to reference Lossdorfer S, Yildiz F, Gotz W et al (2010) Anabolic effect of intermittent PTH(1–34) on the local microenvironment during the late phase of periodontal repair in a rat model of tooth root resorption. Clin Oral Investig 14:89–98PubMedCrossRef Lossdorfer S, Yildiz F, Gotz W et al (2010) Anabolic effect of intermittent PTH(1–34) on the local microenvironment during the late phase of periodontal repair in a rat model of tooth root resorption. Clin Oral Investig 14:89–98PubMedCrossRef
21.
go back to reference Nohutcu RM, McCauley LK, Koh AJ et al (1997) Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J Periodontol 68:320–327PubMedCrossRef Nohutcu RM, McCauley LK, Koh AJ et al (1997) Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J Periodontol 68:320–327PubMedCrossRef
22.
go back to reference Pettway GJ, Meganck JA, Koh AJ et al (2008) Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone 42:806–818PubMedCentralPubMedCrossRef Pettway GJ, Meganck JA, Koh AJ et al (2008) Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone 42:806–818PubMedCentralPubMedCrossRef
23.
24.
go back to reference Schjott M, Andreasen JO (2005) Emdogain does not prevent progressive root resorption after replantation of avulsed teeth: a clinical study. Dent Traumatol 21:46–50PubMedCrossRef Schjott M, Andreasen JO (2005) Emdogain does not prevent progressive root resorption after replantation of avulsed teeth: a clinical study. Dent Traumatol 21:46–50PubMedCrossRef
25.
go back to reference Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedCrossRef Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedCrossRef
27.
go back to reference Watanabe T, Yasue A, Fujihara S et al (2012) Periostin regulates MMP-2 expression via the alphavbeta3 integrin/ERK pathway in human periodontal ligament cells. Arch Oral Biol 57:52–59PubMedCrossRef Watanabe T, Yasue A, Fujihara S et al (2012) Periostin regulates MMP-2 expression via the alphavbeta3 integrin/ERK pathway in human periodontal ligament cells. Arch Oral Biol 57:52–59PubMedCrossRef
28.
go back to reference Wolf M, Lossdorfer S, Abuduwali N et al (2012) Potential role of high mobility group box protein 1 and intermittent PTH (1–34) in periodontal tissue repair following orthodontic tooth movement in rats. Clin Oral Investig 17:989–997PubMedCrossRef Wolf M, Lossdorfer S, Abuduwali N et al (2012) Potential role of high mobility group box protein 1 and intermittent PTH (1–34) in periodontal tissue repair following orthodontic tooth movement in rats. Clin Oral Investig 17:989–997PubMedCrossRef
29.
go back to reference Wolf M, Lossdorfer S, Abuduwali N et al (2012) Effect of intermittent PTH(1–34) on human periodontal ligament cells transplanted into immunocompromised mice. Tissue Eng Part A 18:1849–1856PubMedCentralPubMedCrossRef Wolf M, Lossdorfer S, Abuduwali N et al (2012) Effect of intermittent PTH(1–34) on human periodontal ligament cells transplanted into immunocompromised mice. Tissue Eng Part A 18:1849–1856PubMedCentralPubMedCrossRef
30.
go back to reference Zahrowski J, Jeske A (2011) Apical root resorption is associated with comprehensive orthodontic treatment but not clearly dependent on prior tooth characteristics or orthodontic techniques. J Am Dent Assoc 142:66–68PubMedCrossRef Zahrowski J, Jeske A (2011) Apical root resorption is associated with comprehensive orthodontic treatment but not clearly dependent on prior tooth characteristics or orthodontic techniques. J Am Dent Assoc 142:66–68PubMedCrossRef
Metadata
Title
In vivo differentiation of human periodontal ligament cells leads to formation of dental hard tissue
Authors
Dr. M. Wolf
S. Lossdörfer
N. Abuduwali
R. Meyer
S. Kebir
W. Götz
A. Jäger
Publication date
01-11-2013
Publisher
Springer Berlin Heidelberg
Published in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Issue 6/2013
Print ISSN: 1434-5293
Electronic ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-013-0155-y

Other articles of this Issue 6/2013

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 6/2013 Go to the issue

Informationen

DGKFO-Mitteilungen