Skip to main content
Top
Published in: Clinical Oral Investigations 6/2011

01-12-2011 | Original Article

PTH(1-34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells

Authors: Stefan Lossdörfer, Werner Götz, Andreas Jäger

Published in: Clinical Oral Investigations | Issue 6/2011

Login to get access

Abstract

Parathyroid hormone (PTH) is widely accepted as an anabolic agent when administered intermittently. Here, we explored the influence of intermittent PTH(1-34) on the expression of local factors by human periodontal ligament (PDL) cells that modify osteoclast biology. This approach aimed at a further elucidation of the role of the hormone and of PDL cells in the regulation of periodontal tissue homeostasis and of repair processes. In a co-culture model of mature PDL cells and RAW 264.7 cells, intermittent PTH(1-34) induced an increased gene expression for tartrate-resistant acid phosphatase (+84%), cathepsin K (+56%), and vitronectin-receptor (+56%); and an enhanced resorptive activity of differentiated osteoclasts (+154%). These findings were correlated with a reduction of the osteoprotegerin (OPG)/receptor activator of nuclear factor kappaB ligand (RANKL) ratio in the presence of PTH(1-34; −44%). Similar results were obtained when RAW cells were cultured with the conditioned medium of PTH(1-34)-stimulated PDL cells. In contrast, when less mature PDL cells were co-cultured with RAW cells, PTH(1-34) induced an inhibition of osteoclastic differentiation (TRAP, −35%; cathepsin K, −28%; vitronectin-receptor, −35%), a reduction of the resorbed substrate area (−77%) and an increase of the OPG/RANKL ratio (+11%). The conditioned medium of PTH(1-34)-pretreated less mature PDL cells led to a down-regulation of the number and activity of multinucleated cells. These data indicate that intermittent PTH(1-34) modifies the expression of membrane-bound and secreted factors by PDL cells which then in turn alter osteoclast biology. The PDL cell response to PTH(1-34) is specific in terms of cell maturation and the mechanism involved.
Literature
1.
go back to reference Bostanci N, Ilgenli T, Emingil G et al (2007) Gingival crevicular fluid levels of RANKL and OPG in periodontal diseases: implications of their relative ratio. J Clin Periodontol 34:370–376PubMedCrossRef Bostanci N, Ilgenli T, Emingil G et al (2007) Gingival crevicular fluid levels of RANKL and OPG in periodontal diseases: implications of their relative ratio. J Clin Periodontol 34:370–376PubMedCrossRef
2.
go back to reference Nagasawa T, Kiji M, Yashiro R et al (2000) (2007) Roles of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in periodontal health and disease. Periodontol 43:65–84CrossRef Nagasawa T, Kiji M, Yashiro R et al (2000) (2007) Roles of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in periodontal health and disease. Periodontol 43:65–84CrossRef
3.
go back to reference Lu HK, Chen YL, Chang HC et al (2006) Identification of the osteoprotegerin/receptor activator of nuclear factor-kappa B ligand system in gingival crevicular fluid and tissue of patients with chronic periodontitis. J Periodontal Res 41:354–360PubMedCrossRef Lu HK, Chen YL, Chang HC et al (2006) Identification of the osteoprotegerin/receptor activator of nuclear factor-kappa B ligand system in gingival crevicular fluid and tissue of patients with chronic periodontitis. J Periodontal Res 41:354–360PubMedCrossRef
4.
go back to reference Belibasakis G, Bostanci N, Hashim A et al (2007) Regulation of RANKL and OPG gene expression in human gingival fibroblasts and periodontal ligament cells by Porphyromonas gingivalis: a putative role of the Arg-gingipains. Microb Pathog 43:46–53PubMedCrossRef Belibasakis G, Bostanci N, Hashim A et al (2007) Regulation of RANKL and OPG gene expression in human gingival fibroblasts and periodontal ligament cells by Porphyromonas gingivalis: a putative role of the Arg-gingipains. Microb Pathog 43:46–53PubMedCrossRef
5.
go back to reference Yamamoto T, Kita M, Oseko F et al (2006) Cytokine production in human periodontal ligament cells stimulated with Porphyromonas gingivalis. J Periodontal Res 41:554–559PubMedCrossRef Yamamoto T, Kita M, Oseko F et al (2006) Cytokine production in human periodontal ligament cells stimulated with Porphyromonas gingivalis. J Periodontal Res 41:554–559PubMedCrossRef
6.
go back to reference Lappin DF, Sherrabeh S, Jenkins WM et al (2007) Effect of smoking on serum RANKL and OPG in sex, age and clinically matched supportive-therapy periodontitis patients. J Clin Periodontol 34:271–277PubMedCrossRef Lappin DF, Sherrabeh S, Jenkins WM et al (2007) Effect of smoking on serum RANKL and OPG in sex, age and clinically matched supportive-therapy periodontitis patients. J Clin Periodontol 34:271–277PubMedCrossRef
7.
go back to reference Nishijima Y, Yamaguchi M, Kojima T et al (2006) Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res 9:63–70PubMedCrossRef Nishijima Y, Yamaguchi M, Kojima T et al (2006) Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res 9:63–70PubMedCrossRef
8.
go back to reference Yamaguchi M, Aihara N, Kojima T et al (2006) RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 85:751–756PubMedCrossRef Yamaguchi M, Aihara N, Kojima T et al (2006) RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 85:751–756PubMedCrossRef
9.
go back to reference Kanzaki H, Chiba M, Arai K et al (2006) Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther 13:678–685PubMedCrossRef Kanzaki H, Chiba M, Arai K et al (2006) Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther 13:678–685PubMedCrossRef
10.
go back to reference Kanzaki H, Chiba M, Takahashi I et al (2004) Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res 83:920–925PubMedCrossRef Kanzaki H, Chiba M, Takahashi I et al (2004) Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res 83:920–925PubMedCrossRef
11.
go back to reference Pinkerton MN, Wescott DC, Gaffey BJ et al (2008) Cultured human periodontal ligament cells constitutively express multiple osteotropic cytokines and growth factors, several of which are responsive to mechanical deformation. J Periodontal Res 43:343–351PubMedCrossRef Pinkerton MN, Wescott DC, Gaffey BJ et al (2008) Cultured human periodontal ligament cells constitutively express multiple osteotropic cytokines and growth factors, several of which are responsive to mechanical deformation. J Periodontal Res 43:343–351PubMedCrossRef
12.
go back to reference Kanzaki H, Chiba M, Shimizu Y et al (2001) Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 80:887–891PubMedCrossRef Kanzaki H, Chiba M, Shimizu Y et al (2001) Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 80:887–891PubMedCrossRef
13.
go back to reference Lossdorfer S, Gotz W, Jager A (2005) PTH(1-34) affects osteoprotegerin production in human PDL cells in vitro. J Dent Res 84:634–638PubMedCrossRef Lossdorfer S, Gotz W, Jager A (2005) PTH(1-34) affects osteoprotegerin production in human PDL cells in vitro. J Dent Res 84:634–638PubMedCrossRef
14.
go back to reference Hasegawa T, Yoshimura Y, Kikuiri T et al (2002) Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res 37:405–411PubMedCrossRef Hasegawa T, Yoshimura Y, Kikuiri T et al (2002) Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res 37:405–411PubMedCrossRef
15.
go back to reference Isaka J, Ohazama A, Kobayashi M et al (2001) Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol 72:314–323PubMedCrossRef Isaka J, Ohazama A, Kobayashi M et al (2001) Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol 72:314–323PubMedCrossRef
16.
go back to reference Chou AM, Sae-Lim V, Lim T et al (2002) Culturing and characterization of human periodontal ligament fibroblasts-a preliminary study. Mater Sci Eng 20:77–83CrossRef Chou AM, Sae-Lim V, Lim T et al (2002) Culturing and characterization of human periodontal ligament fibroblasts-a preliminary study. Mater Sci Eng 20:77–83CrossRef
17.
go back to reference Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal l igament cells: an in vitro analysis. Eur J Orthod 19:615–621PubMedCrossRef Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal l igament cells: an in vitro analysis. Eur J Orthod 19:615–621PubMedCrossRef
18.
go back to reference Fukushima H, Jimi E, Kajiya H et al (2005) Parathyroid-hormone-related protein induces expression of receptor activator of NF-{kappa}B ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway. J Dent Res 84:329–334PubMedCrossRef Fukushima H, Jimi E, Kajiya H et al (2005) Parathyroid-hormone-related protein induces expression of receptor activator of NF-{kappa}B ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway. J Dent Res 84:329–334PubMedCrossRef
19.
go back to reference Zhang D, Yang YQ, Li XT et al (2004) The expression of osteoprotegerin and the receptor activator of nuclear factor kappa B ligand in human periodontal ligament cells cultured with and without 1alpha, 25-dihydroxyvitamin D3. Arch Oral Biol 49:71–76PubMedCrossRef Zhang D, Yang YQ, Li XT et al (2004) The expression of osteoprotegerin and the receptor activator of nuclear factor kappa B ligand in human periodontal ligament cells cultured with and without 1alpha, 25-dihydroxyvitamin D3. Arch Oral Biol 49:71–76PubMedCrossRef
20.
go back to reference Yang ZJ, Cheng V, Barnes S et al (1997) Pulsatile parathyroid hormone (PTH) treatment increases bone formation in vitro in fetal rat calvarial cell (FRCC) culture system. J Bone Miner Res 12(Suppl 1):S317 Yang ZJ, Cheng V, Barnes S et al (1997) Pulsatile parathyroid hormone (PTH) treatment increases bone formation in vitro in fetal rat calvarial cell (FRCC) culture system. J Bone Miner Res 12(Suppl 1):S317
21.
go back to reference Sone T, Fukunaga M, Ono S et al (1995) A small dose of human parathyroid hormone(1-34) increased bone mass in the lumbar vertebrae in patients with senile osteoporosis. Miner Electrolyte Metab 21:232–235PubMed Sone T, Fukunaga M, Ono S et al (1995) A small dose of human parathyroid hormone(1-34) increased bone mass in the lumbar vertebrae in patients with senile osteoporosis. Miner Electrolyte Metab 21:232–235PubMed
22.
go back to reference Lossdorfer S, Gotz W, Jager A (2006) Parathyroid hormone modifies human periodontal ligament cell proliferation and survival in vitro. J Periodontal Res 41:519–526PubMedCrossRef Lossdorfer S, Gotz W, Jager A (2006) Parathyroid hormone modifies human periodontal ligament cell proliferation and survival in vitro. J Periodontal Res 41:519–526PubMedCrossRef
23.
go back to reference Lossdorfer S, Stier S, Gotz W et al (2006) Maturation-state dependent response of human periodontal ligament cells to an intermittent parathyroid hormone exposure in vitro. J Periodontal Res 41:62–72PubMedCrossRef Lossdorfer S, Stier S, Gotz W et al (2006) Maturation-state dependent response of human periodontal ligament cells to an intermittent parathyroid hormone exposure in vitro. J Periodontal Res 41:62–72PubMedCrossRef
24.
go back to reference Bonewald LF, Harris SE, Rosser J et al (2003) Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72:537–547PubMedCrossRef Bonewald LF, Harris SE, Rosser J et al (2003) Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72:537–547PubMedCrossRef
25.
go back to reference Hayman AR, Jones SJ, Boyde A et al (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122:3151–3162PubMed Hayman AR, Jones SJ, Boyde A et al (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122:3151–3162PubMed
26.
go back to reference Inaoka T, Bilbe G, Ishibashi O et al (1995) Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun 206:89–96PubMedCrossRef Inaoka T, Bilbe G, Ishibashi O et al (1995) Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun 206:89–96PubMedCrossRef
27.
go back to reference Felding-Habermann B, Cheresh DA (1993) Vitronectin and its receptors. Curr Opin Cell Biol 5:864–868PubMedCrossRef Felding-Habermann B, Cheresh DA (1993) Vitronectin and its receptors. Curr Opin Cell Biol 5:864–868PubMedCrossRef
28.
go back to reference Andrade I Jr, Taddei SR, Garlet GP et al (2009) CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res 88:1037–1041PubMedCrossRef Andrade I Jr, Taddei SR, Garlet GP et al (2009) CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res 88:1037–1041PubMedCrossRef
29.
go back to reference Lossdorfer S, Schwartz Z, Wang L et al (2004) Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res A 70:361–369PubMedCrossRef Lossdorfer S, Schwartz Z, Wang L et al (2004) Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res A 70:361–369PubMedCrossRef
30.
go back to reference Kwan Tat S, Amiable N, Pelletier JP et al (2009) Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 48:1482–1490CrossRef Kwan Tat S, Amiable N, Pelletier JP et al (2009) Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 48:1482–1490CrossRef
31.
go back to reference Czupalla C, Mansukoski H, Pursche T et al (2005) Comparative study of protein and mRNA expression during osteoclastogenesis. Proteomics 5:3868–3875PubMedCrossRef Czupalla C, Mansukoski H, Pursche T et al (2005) Comparative study of protein and mRNA expression during osteoclastogenesis. Proteomics 5:3868–3875PubMedCrossRef
32.
go back to reference Li X, Qin L, Bergenstock M et al (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–33106PubMedCrossRef Li X, Qin L, Bergenstock M et al (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–33106PubMedCrossRef
33.
go back to reference Mozar A, Haren N, Chausseraud M et al (2008) High extracellular inorganic phosphate oncentration inhibits RANK-RANKL signaling in osteoclast-like cells. J Cell Physiol 215:47–54PubMedCrossRef Mozar A, Haren N, Chausseraud M et al (2008) High extracellular inorganic phosphate oncentration inhibits RANK-RANKL signaling in osteoclast-like cells. J Cell Physiol 215:47–54PubMedCrossRef
34.
go back to reference Hsu H, Lacey D, Dunstan C et al (1999) Tumor necrosis factor receptor family member RANKL mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545PubMedCrossRef Hsu H, Lacey D, Dunstan C et al (1999) Tumor necrosis factor receptor family member RANKL mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545PubMedCrossRef
35.
go back to reference Suda T, Takahashi N, Martin T (1992) Modulation of osteoclast differentiation. Endocr Rev 13:66–80PubMed Suda T, Takahashi N, Martin T (1992) Modulation of osteoclast differentiation. Endocr Rev 13:66–80PubMed
36.
go back to reference Bianco P, Costantini M, Dearden L et al (1987) Expression of tartrate-resistant acid phosphatase in bone marrow macrophages. Basic Appl Histochem 31:433–440PubMed Bianco P, Costantini M, Dearden L et al (1987) Expression of tartrate-resistant acid phosphatase in bone marrow macrophages. Basic Appl Histochem 31:433–440PubMed
37.
go back to reference Chen HL, Demiralp B, Schneider A et al (2002) Parathyroid hormone and parathyroid hormone-related protein exert both pro- and anti-apoptotic effects in mesenchymal cells. J Biol Chem 277:19374–19381PubMedCrossRef Chen HL, Demiralp B, Schneider A et al (2002) Parathyroid hormone and parathyroid hormone-related protein exert both pro- and anti-apoptotic effects in mesenchymal cells. J Biol Chem 277:19374–19381PubMedCrossRef
38.
go back to reference Jackson R, Kumarasuriyar A, Nurcombe V et al (2006) Long-term loading inhibits ERK1/2 phosphorylation and increases FGFR3 expression in MC3T3-E1 osteoblast cells. J Cell Physiol 209:894–904PubMedCrossRef Jackson R, Kumarasuriyar A, Nurcombe V et al (2006) Long-term loading inhibits ERK1/2 phosphorylation and increases FGFR3 expression in MC3T3-E1 osteoblast cells. J Cell Physiol 209:894–904PubMedCrossRef
39.
go back to reference Wang Y, Liu Y, Rowe D (2007) Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblasts in primary osteoblast cultures. Am J Physiol Endocrinol Metab 292:E594–E603PubMedCrossRef Wang Y, Liu Y, Rowe D (2007) Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblasts in primary osteoblast cultures. Am J Physiol Endocrinol Metab 292:E594–E603PubMedCrossRef
40.
go back to reference Uchiyama M, Nakamichi Y, Nakamura M et al (2009) Dental pulp and periodontal ligament cells support osteoclastic differentiation. J Dent Res 88:609–614PubMedCrossRef Uchiyama M, Nakamichi Y, Nakamura M et al (2009) Dental pulp and periodontal ligament cells support osteoclastic differentiation. J Dent Res 88:609–614PubMedCrossRef
41.
go back to reference Onyia JE, Miles RR, Yang X et al (2000) In vivo demonstration that human parathyroid hormone 1–38 inhibits the expression of osteoprotegerin in bone with the kinetics of an immediate early gene. J Bone Miner Res 15:863–871PubMedCrossRef Onyia JE, Miles RR, Yang X et al (2000) In vivo demonstration that human parathyroid hormone 1–38 inhibits the expression of osteoprotegerin in bone with the kinetics of an immediate early gene. J Bone Miner Res 15:863–871PubMedCrossRef
42.
go back to reference Dempster D, Hughes-Begos C, Plavetic-Chee K et al (2005) Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts. J Cell Biochem 95:139–148PubMedCrossRef Dempster D, Hughes-Begos C, Plavetic-Chee K et al (2005) Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts. J Cell Biochem 95:139–148PubMedCrossRef
43.
go back to reference Isogai Y, Akatsu T, Ishizuya T et al (1996) Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J Bone Miner Res 11:1384–1393PubMedCrossRef Isogai Y, Akatsu T, Ishizuya T et al (1996) Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J Bone Miner Res 11:1384–1393PubMedCrossRef
44.
go back to reference Schwartz Z, Semba S, Graves D et al (1997) Rapid and long-term effects of PTH(1-34) on growth plate chondrocytes are mediated through two different pathways in a cell-maturation-dependent manner. Bone 21:249–259PubMedCrossRef Schwartz Z, Semba S, Graves D et al (1997) Rapid and long-term effects of PTH(1-34) on growth plate chondrocytes are mediated through two different pathways in a cell-maturation-dependent manner. Bone 21:249–259PubMedCrossRef
45.
go back to reference Leibbrandt A, Penninger JM (2009) RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv Exp Med Biol 649:100–113PubMedCrossRef Leibbrandt A, Penninger JM (2009) RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv Exp Med Biol 649:100–113PubMedCrossRef
46.
go back to reference Wright HL, McCarthy HS, Middleton J et al (2009) RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2:56–64PubMedCrossRef Wright HL, McCarthy HS, Middleton J et al (2009) RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2:56–64PubMedCrossRef
47.
go back to reference Kobayashi Y, Udagawa N, Takahashi N (2009) Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr 19:61–72PubMed Kobayashi Y, Udagawa N, Takahashi N (2009) Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr 19:61–72PubMed
48.
go back to reference Tsuji K, Uno K, Zhang GX et al (2004) Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab 22:94–103PubMedCrossRef Tsuji K, Uno K, Zhang GX et al (2004) Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab 22:94–103PubMedCrossRef
49.
go back to reference Kim T, Handa A, Iida J et al (2007) RANKL expression in rat periodontal ligament subjected to a continuous orthodontic force. Arch Oral Biol 52:244–250PubMedCrossRef Kim T, Handa A, Iida J et al (2007) RANKL expression in rat periodontal ligament subjected to a continuous orthodontic force. Arch Oral Biol 52:244–250PubMedCrossRef
50.
go back to reference Taubman MA, Kawai T, Han X (2007) The new concept of periodontal disease pathogenesis requires new and novel therapeutic strategies. J Clin Periodontol 34:367–369PubMedCrossRef Taubman MA, Kawai T, Han X (2007) The new concept of periodontal disease pathogenesis requires new and novel therapeutic strategies. J Clin Periodontol 34:367–369PubMedCrossRef
51.
go back to reference Lossdorfer S, Gotz W, Rath-Deschner B et al (2006) Parathyroid hormone(1-34) mediates proliferative and apoptotic signaling in human periodontal ligament cells in vitro via protein kinase C-dependent and protein kinase A-dependent pathways. Cell Tissue Res 325:469–479PubMedCrossRef Lossdorfer S, Gotz W, Rath-Deschner B et al (2006) Parathyroid hormone(1-34) mediates proliferative and apoptotic signaling in human periodontal ligament cells in vitro via protein kinase C-dependent and protein kinase A-dependent pathways. Cell Tissue Res 325:469–479PubMedCrossRef
52.
go back to reference Nohutcu RM, McCauley LK, Koh AJ et al (1997) Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J Periodontol 68:320–327PubMed Nohutcu RM, McCauley LK, Koh AJ et al (1997) Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J Periodontol 68:320–327PubMed
Metadata
Title
PTH(1-34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells
Authors
Stefan Lossdörfer
Werner Götz
Andreas Jäger
Publication date
01-12-2011
Publisher
Springer-Verlag
Published in
Clinical Oral Investigations / Issue 6/2011
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-010-0456-0

Other articles of this Issue 6/2011

Clinical Oral Investigations 6/2011 Go to the issue