Skip to main content
Top
Published in: Inflammation Research 7/2023

Open Access 29-06-2023 | Glucocorticoid | Original Research Paper

The regulation of TRPA1 expression and function by Th1 and Th2-type inflammation in human A549 lung epithelial cells

Authors: Samu Luostarinen, Mari Hämäläinen, Antti Pemmari, Eeva Moilanen

Published in: Inflammation Research | Issue 7/2023

Login to get access

Abstract

Background

Transient Receptor Potential Ankyrin 1 (TRPA1) is a cation channel that mediates pain, itch, cough, and neurogenic inflammation in response to pungent compounds such as acrolein in cigarette smoke. TRPA1 is also activated by endogenous factors and promotes inflammation in asthma models. We have recently shown that TRPA1 is upregulated by inflammatory cytokines in A549 human lung epithelial cells. Here, we explored the effects of Th1 and Th2-type inflammation on TRPA1.

Methods and results

TRPA1 expression and function was studied in A549 human lung epithelial cells. To induce inflammation, the cells were exposed to a combination of cytokines TNF-α and IL-1β; and to model Th1 or Th2-type responses, IFN-γ or IL-4/IL-13 was added, respectively. TRPA1 expression (measured by RT-PCR and Western blot) and function (assessed by Fluo-3AM intracellular calcium measurement) was enhanced under the influence of TNF-α + IL-1β. IFN-γ further enhanced TRPA1 expression and function, whereas IL-4 and IL-13 suppressed them. The effects of IFN-γ and IL-4 on TRPA1 expression were reversed by the Janus kinase (JAK) inhibitors baricitinib and tofacitinib, and those of IL-4 also by the STAT6 inhibitor AS1517499. The glucocorticoid dexamethasone downregulated TRPA1 expression, whereas the PDE4 inhibitor rolipram had no effect. Under all conditions, TRPA1 blockade was found to reduce the production of LCN2 and CXCL6.

Conclusions

TRPA1 expression and function in lung epithelial cells was upregulated under inflammatory conditions. IFN-γ further increased TRPA1 expression while IL-4 and IL-13 suppressed that in a JAK-STAT6 dependent manner which is novel. TRPA1 also modulated the expression of genes relevant to innate immunity and lung disease. We propose that the paradigm of Th1 and Th2 inflammation is a major determinant of TRPA1 expression and function, which should be considered when targeting TRPA1 for pharmacotherapy in inflammatory (lung) disease.
Appendix
Available only for authorised users
Literature
3.
go back to reference Jordt S-E, Bautista DM, Chuang H, McKemy DD, Zygmunt PM, Högestätt ED, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nat Publ Group. 2004;427:260–5. Jordt S-E, Bautista DM, Chuang H, McKemy DD, Zygmunt PM, Högestätt ED, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nat Publ Group. 2004;427:260–5.
4.
5.
go back to reference Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, et al. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels Taylor & Francis. 2008;2:287–98. Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, et al. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels Taylor & Francis. 2008;2:287–98.
6.
go back to reference Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci Soc Neurosci. 2008;28:2485–94.CrossRef Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci Soc Neurosci. 2008;28:2485–94.CrossRef
7.
go back to reference Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt S-E. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 2008;118:1899–910.PubMedPubMedCentralCrossRef Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt S-E. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 2008;118:1899–910.PubMedPubMedCentralCrossRef
8.
go back to reference Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol ASPET. 2009;75:820–9.CrossRef Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol ASPET. 2009;75:820–9.CrossRef
9.
go back to reference Nummenmaa E, Hamalainen M, Moilanen LJ, Paukkeri EL, Nieminen RM, Moilanen T, et al. Transient receptor potential ankyrin 1 (TRPA1) is functionally expressed in primary human osteoarthritic chondrocytes. Arthritis Res Ther England. 2016;18:184–5. Nummenmaa E, Hamalainen M, Moilanen LJ, Paukkeri EL, Nieminen RM, Moilanen T, et al. Transient receptor potential ankyrin 1 (TRPA1) is functionally expressed in primary human osteoarthritic chondrocytes. Arthritis Res Ther England. 2016;18:184–5.
10.
go back to reference Atoyan R, Shander D, Botchkareva N, v. Non-Neuronal Expression of Transient Receptor Potential Type A1 (TRPA1) in Human Skin. J Investigat Dermatol. 2009;129:2312–5.CrossRef Atoyan R, Shander D, Botchkareva N, v. Non-Neuronal Expression of Transient Receptor Potential Type A1 (TRPA1) in Human Skin. J Investigat Dermatol. 2009;129:2312–5.CrossRef
11.
go back to reference Jain A, Brnneke S, Kolbe L, Stb F, Wenck H, Neufang G. TRP-channel-specific cutaneous eicosanoid release patterns. Pain Elsevier. 2011;152:2765–72.CrossRef Jain A, Brnneke S, Kolbe L, Stb F, Wenck H, Neufang G. TRP-channel-specific cutaneous eicosanoid release patterns. Pain Elsevier. 2011;152:2765–72.CrossRef
12.
go back to reference Luostarinen S, Hämäläinen M, Moilanen E. Transient receptor potential ankyrin 1 (TRPA1)-an inflammation-induced factor in human HaCaT Keratinocytes. Int J Mol Sci. 2021;22(7):3322.PubMedPubMedCentralCrossRef Luostarinen S, Hämäläinen M, Moilanen E. Transient receptor potential ankyrin 1 (TRPA1)-an inflammation-induced factor in human HaCaT Keratinocytes. Int J Mol Sci. 2021;22(7):3322.PubMedPubMedCentralCrossRef
13.
go back to reference Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, et al. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS ONE. 2012;7: e42454.PubMedPubMedCentralCrossRef Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, et al. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS ONE. 2012;7: e42454.PubMedPubMedCentralCrossRef
14.
go back to reference Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, et al. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recep Signal Transd. 2011;31:350–8.CrossRef Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, et al. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recep Signal Transd. 2011;31:350–8.CrossRef
15.
go back to reference Luostarinen S, Hämäläinen M, Hatano N, Muraki K, Moilanen E. The inflammatory regulation of TRPA1 expression in human A549 lung epithelial cells. Pulm Pharmacol Ther. 2021;70:102059.PubMedCrossRef Luostarinen S, Hämäläinen M, Hatano N, Muraki K, Moilanen E. The inflammatory regulation of TRPA1 expression in human A549 lung epithelial cells. Pulm Pharmacol Ther. 2021;70:102059.PubMedCrossRef
16.
go back to reference Wang S, Shi P, Wang Y. TRPA1 ion channels in vagal afferent nerves contribute to ventilator-induced lung injury in a rat model. Gen Physiol Biophys. 2013;32:389–94.PubMedCrossRef Wang S, Shi P, Wang Y. TRPA1 ion channels in vagal afferent nerves contribute to ventilator-induced lung injury in a rat model. Gen Physiol Biophys. 2013;32:389–94.PubMedCrossRef
17.
go back to reference Lin A-H, Liu M-H, Ko H-K, Perng D-W, Lee T-S, Kou YR. Lung Epithelial TRPA1 transduces the extracellular ROS into transcriptional regulation of lung inflammation induced by cigarette smoke: the role of influxed Ca 2+. Mediators Inflamm. 2015;2015:1–16. Lin A-H, Liu M-H, Ko H-K, Perng D-W, Lee T-S, Kou YR. Lung Epithelial TRPA1 transduces the extracellular ROS into transcriptional regulation of lung inflammation induced by cigarette smoke: the role of influxed Ca 2+. Mediators Inflamm. 2015;2015:1–16.
18.
go back to reference Prandini P, de Logu F, Fusi C, Provezza L, Nassini R, Montagner G, et al. Transient receptor potential ankyrin 1 channels modulate inflammatory response in respiratory cells from patients with cystic fibrosis. Am J Respir Cell Mol Biol. 2016;55:645–56.PubMedCrossRef Prandini P, de Logu F, Fusi C, Provezza L, Nassini R, Montagner G, et al. Transient receptor potential ankyrin 1 channels modulate inflammatory response in respiratory cells from patients with cystic fibrosis. Am J Respir Cell Mol Biol. 2016;55:645–56.PubMedCrossRef
19.
go back to reference Wang M, Zhang Y, Xu M, Zhang H, Chen Y, Chung KF, et al. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic Biol Med. 2019;134:229–38.PubMedCrossRef Wang M, Zhang Y, Xu M, Zhang H, Chen Y, Chung KF, et al. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic Biol Med. 2019;134:229–38.PubMedCrossRef
21.
go back to reference Yap JMG, Ueda T, Takeda N, Fukumitsu K, Fukuda S, Uemura T, et al. An inflammatory stimulus sensitizes TRPA1 channel to increase cytokine release in human lung fibroblasts. Cytokine. 2020;129: 155027.PubMedCrossRef Yap JMG, Ueda T, Takeda N, Fukumitsu K, Fukuda S, Uemura T, et al. An inflammatory stimulus sensitizes TRPA1 channel to increase cytokine release in human lung fibroblasts. Cytokine. 2020;129: 155027.PubMedCrossRef
23.
go back to reference Nummenmaa E, Hämäläinen M, Pemmari A, Moilanen LJ, Tuure L, Nieminen RM, et al. Transient receptor potential ankyrin 1 (TRPA1) Is involved in upregulating interleukin-6 expression in osteoarthritic chondrocyte models. Int J Mol Sci. 2020;22:87.PubMedPubMedCentralCrossRef Nummenmaa E, Hämäläinen M, Pemmari A, Moilanen LJ, Tuure L, Nieminen RM, et al. Transient receptor potential ankyrin 1 (TRPA1) Is involved in upregulating interleukin-6 expression in osteoarthritic chondrocyte models. Int J Mol Sci. 2020;22:87.PubMedPubMedCentralCrossRef
24.
go back to reference Hajna Z, Csekő K, Kemény Á, Kereskai L, Kiss T, Perkecz A, et al. Complex regulatory role of the TRPA1 receptor in acute and chronic airway inflammation mouse models. Int J Mol Sci. 2020;21:4109.PubMedPubMedCentralCrossRef Hajna Z, Csekő K, Kemény Á, Kereskai L, Kiss T, Perkecz A, et al. Complex regulatory role of the TRPA1 receptor in acute and chronic airway inflammation mouse models. Int J Mol Sci. 2020;21:4109.PubMedPubMedCentralCrossRef
25.
go back to reference Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci. 2009;106:9099–104.PubMedPubMedCentralCrossRef Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci. 2009;106:9099–104.PubMedPubMedCentralCrossRef
26.
go back to reference Wu Y, You H, Ma P, Li L, Yuan Y, Li J, et al. Role of transient receptor potential ion channels and evoked levels of neuropeptides in a formaldehyde-induced model of asthma in BALB/c mice. PLoS ONE. 2013;8:e62827.PubMedPubMedCentralCrossRef Wu Y, You H, Ma P, Li L, Yuan Y, Li J, et al. Role of transient receptor potential ion channels and evoked levels of neuropeptides in a formaldehyde-induced model of asthma in BALB/c mice. PLoS ONE. 2013;8:e62827.PubMedPubMedCentralCrossRef
27.
go back to reference Li M, Fan X, Yue Q, Hu F, Zhang Y, Zhu C. The neuro-immune interaction in airway inflammation through TRPA1 expression in CD4+ T cells of asthmatic mice. Int Immunopharmacol. 2020;86: 106696.PubMedCrossRef Li M, Fan X, Yue Q, Hu F, Zhang Y, Zhu C. The neuro-immune interaction in airway inflammation through TRPA1 expression in CD4+ T cells of asthmatic mice. Int Immunopharmacol. 2020;86: 106696.PubMedCrossRef
29.
go back to reference Sun Y, Liu M, Fan X, Zhou L, Li M, Hu F, et al. Effects of cigarette smoke on the aggravation of ovalbumin-induced asthma and the expressions of TRPA1 and tight junctions in mice. Mol Immunol. 2021;135:62–72.PubMedCrossRef Sun Y, Liu M, Fan X, Zhou L, Li M, Hu F, et al. Effects of cigarette smoke on the aggravation of ovalbumin-induced asthma and the expressions of TRPA1 and tight junctions in mice. Mol Immunol. 2021;135:62–72.PubMedCrossRef
30.
go back to reference Hatano N, Itoh Y, Suzuki H, Muraki Y, Hayashi H, Onozaki K, et al. Hypoxia-inducible factor-1alpha (HIF1alpha) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like motif to modulate cytokine release. J Biol Chem United States. 2012;287:31962–72.CrossRef Hatano N, Itoh Y, Suzuki H, Muraki Y, Hayashi H, Onozaki K, et al. Hypoxia-inducible factor-1alpha (HIF1alpha) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like motif to modulate cytokine release. J Biol Chem United States. 2012;287:31962–72.CrossRef
31.
go back to reference Meng J, Wang J, Steinhoff M, Dolly JO. TNFα induces co-trafficking of TRPV1/TRPA1 in VAMP1-containing vesicles to the plasmalemma via Munc18–1/syntaxin1/SNAP-25 mediated fusion. Sci Rep. 2016;6:21226.PubMedPubMedCentralCrossRef Meng J, Wang J, Steinhoff M, Dolly JO. TNFα induces co-trafficking of TRPV1/TRPA1 in VAMP1-containing vesicles to the plasmalemma via Munc18–1/syntaxin1/SNAP-25 mediated fusion. Sci Rep. 2016;6:21226.PubMedPubMedCentralCrossRef
32.
go back to reference Nugent M, Yusef YR, Meng J, Wang J, Dolly JO. A SNAP-25 cleaving chimera of botulinum neurotoxin /A and /E prevents TNFα−induced elevation of the activities of native TRP channels on early postnatal rat dorsal root ganglion neurons. Neuropharmacology. 2018;138:257–66.PubMedCrossRef Nugent M, Yusef YR, Meng J, Wang J, Dolly JO. A SNAP-25 cleaving chimera of botulinum neurotoxin /A and /E prevents TNFα−induced elevation of the activities of native TRP channels on early postnatal rat dorsal root ganglion neurons. Neuropharmacology. 2018;138:257–66.PubMedCrossRef
33.
go back to reference Takahashi K, Ohta T. Membrane translocation of transient receptor potential ankyrin 1 induced by inflammatory cytokines in lung cancer cells. Biochem Biophys Res Commun. 2017;490:587–93.PubMedCrossRef Takahashi K, Ohta T. Membrane translocation of transient receptor potential ankyrin 1 induced by inflammatory cytokines in lung cancer cells. Biochem Biophys Res Commun. 2017;490:587–93.PubMedCrossRef
34.
go back to reference Schmidt M, Dubin AE, Petrus MJ, Earley TJ, Patapoutian A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron Elsevier. 2009;64:498–509.CrossRef Schmidt M, Dubin AE, Petrus MJ, Earley TJ, Patapoutian A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron Elsevier. 2009;64:498–509.CrossRef
35.
go back to reference Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron Elsevier. 2004;41:849–57.CrossRef Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron Elsevier. 2004;41:849–57.CrossRef
36.
go back to reference Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest United States. 2007;117:1979–87.CrossRef Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest United States. 2007;117:1979–87.CrossRef
37.
go back to reference Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, et al. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain. 2008;131:1241–51.PubMedCrossRef Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, et al. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain. 2008;131:1241–51.PubMedCrossRef
38.
go back to reference Wilson SR, Th L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155:285–95.PubMedPubMedCentralCrossRef Wilson SR, Th L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155:285–95.PubMedPubMedCentralCrossRef
39.
go back to reference Malin S, Molliver D, Christianson JA, Schwartz ES, Cornuet P, Albers KM, et al. TRPV1 and TRPA1 function and modulation are target tissue dependent. J Neurosci Soc Neurosci. 2011;31:10516–28.CrossRef Malin S, Molliver D, Christianson JA, Schwartz ES, Cornuet P, Albers KM, et al. TRPV1 and TRPA1 function and modulation are target tissue dependent. J Neurosci Soc Neurosci. 2011;31:10516–28.CrossRef
40.
go back to reference Nummenmaa E, Hämäläinen M, Moilanen LJ, Moilanen T, Vuolteenaho K, Moilanen E. TRPA1 expression is downregulated by dexamethasone and aurothiomalate in human chondrocytes: TRPA1 as a novel factor and drug target in arthritis. RMD Open. 2017;3:e000556.PubMedPubMedCentralCrossRef Nummenmaa E, Hämäläinen M, Moilanen LJ, Moilanen T, Vuolteenaho K, Moilanen E. TRPA1 expression is downregulated by dexamethasone and aurothiomalate in human chondrocytes: TRPA1 as a novel factor and drug target in arthritis. RMD Open. 2017;3:e000556.PubMedPubMedCentralCrossRef
44.
go back to reference Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. The Lancet. 2018;391:783–800.CrossRef Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. The Lancet. 2018;391:783–800.CrossRef
45.
46.
go back to reference Moilanen LJ, Hamalainen M, Lehtimaki L, Nieminen RM, Muraki K, Moilanen E. Pinosylvin Inhibits TRPA1-induced calcium influx in vitro and trpa1-mediated acute paw inflammation in vivo. Basic Clin Pharmacol Toxicol England. 2016;118:238–42.CrossRef Moilanen LJ, Hamalainen M, Lehtimaki L, Nieminen RM, Muraki K, Moilanen E. Pinosylvin Inhibits TRPA1-induced calcium influx in vitro and trpa1-mediated acute paw inflammation in vivo. Basic Clin Pharmacol Toxicol England. 2016;118:238–42.CrossRef
47.
49.
go back to reference Nagashima S, Yokota M, Nakai E, Kuromitsu S, Ohga K, Takeuchi M, et al. Synthesis and evaluation of 2-{[2-(4-hydroxyphenyl)-ethyl]amino}pyrimidine-5-carboxamide derivatives as novel STAT6 inhibitors. Bioorg Med Chem. 2007;15:1044–55.PubMedCrossRef Nagashima S, Yokota M, Nakai E, Kuromitsu S, Ohga K, Takeuchi M, et al. Synthesis and evaluation of 2-{[2-(4-hydroxyphenyl)-ethyl]amino}pyrimidine-5-carboxamide derivatives as novel STAT6 inhibitors. Bioorg Med Chem. 2007;15:1044–55.PubMedCrossRef
51.
go back to reference Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13:290–314.PubMedPubMedCentralCrossRef Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13:290–314.PubMedPubMedCentralCrossRef
52.
go back to reference Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18:133–45.PubMedPubMedCentralCrossRef Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18:133–45.PubMedPubMedCentralCrossRef
53.
go back to reference Agarwal A, Rochwerg B, Lamontagne F, Siemieniuk RA, Agoritsas T, Askie L, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020;M3379. Agarwal A, Rochwerg B, Lamontagne F, Siemieniuk RA, Agoritsas T, Askie L, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020;M3379.
54.
go back to reference Proost P, de Wolf-Peeters C, Conings R, Opdenakker G, Billiau A, van Damme J. Identification of a novel granulocyte chemotactic protein (GCP-2) from human tumor cells. In vitro and in vivo comparison with natural forms of GRO IP-10 and IL-8. J Immunol. 1993;150:1000–10.PubMedCrossRef Proost P, de Wolf-Peeters C, Conings R, Opdenakker G, Billiau A, van Damme J. Identification of a novel granulocyte chemotactic protein (GCP-2) from human tumor cells. In vitro and in vivo comparison with natural forms of GRO IP-10 and IL-8. J Immunol. 1993;150:1000–10.PubMedCrossRef
55.
go back to reference Proost P, Wuyts A, Conings R, Lenaerts JP, Billiau A, Opdenakker G, et al. Human and bovine granulocyte chemotactic protein-2: complete amino acid sequence and functional characterization as chemokines. Biochemistry. 1993;32:10170–7.PubMedCrossRef Proost P, Wuyts A, Conings R, Lenaerts JP, Billiau A, Opdenakker G, et al. Human and bovine granulocyte chemotactic protein-2: complete amino acid sequence and functional characterization as chemokines. Biochemistry. 1993;32:10170–7.PubMedCrossRef
56.
go back to reference Wuyts A, van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, et al. Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors cxcr1 and cxcr2 and in vivo inflammatory properties. Biochemistry. 1997;36:2716–23.PubMedCrossRef Wuyts A, van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, et al. Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors cxcr1 and cxcr2 and in vivo inflammatory properties. Biochemistry. 1997;36:2716–23.PubMedCrossRef
57.
go back to reference Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10:593–619.PubMedCrossRef Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10:593–619.PubMedCrossRef
58.
go back to reference Jovic S, Linge HM, Shikhagaie MM, Olin AI, Lannefors L, Erjefält JS, et al. The neutrophil-recruiting chemokine GCP-2/CXCL6 is expressed in cystic fibrosis airways and retains its functional properties after binding to extracellular DNA. Mucosal Immunol. 2016;9:112–23.PubMedCrossRef Jovic S, Linge HM, Shikhagaie MM, Olin AI, Lannefors L, Erjefält JS, et al. The neutrophil-recruiting chemokine GCP-2/CXCL6 is expressed in cystic fibrosis airways and retains its functional properties after binding to extracellular DNA. Mucosal Immunol. 2016;9:112–23.PubMedCrossRef
59.
go back to reference Besnard A-G, Struyf S, Guabiraba R, Fauconnier L, Rouxel N, Proost P, et al. CXCL6 antibody neutralization prevents lung inflammation and fibrosis in mice in the bleomycin model. J Leukoc Biol. 2013;94:1317–23.PubMedCrossRef Besnard A-G, Struyf S, Guabiraba R, Fauconnier L, Rouxel N, Proost P, et al. CXCL6 antibody neutralization prevents lung inflammation and fibrosis in mice in the bleomycin model. J Leukoc Biol. 2013;94:1317–23.PubMedCrossRef
60.
go back to reference Guardado S, Ojeda-Juárez D, Kaul M, Nordgren TM. Comprehensive review of lipocalin 2-mediated effects in lung inflammation. Am J Physiol-Lung Cell Mole Physiol. 2021;321:L726–33.CrossRef Guardado S, Ojeda-Juárez D, Kaul M, Nordgren TM. Comprehensive review of lipocalin 2-mediated effects in lung inflammation. Am J Physiol-Lung Cell Mole Physiol. 2021;321:L726–33.CrossRef
61.
go back to reference Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–21.PubMedCrossRef Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–21.PubMedCrossRef
62.
go back to reference Schroll A, Eller K, Feistritzer C, Nairz M, Sonnweber T, Moser PA, et al. Lipocalin-2 ameliorates granulocyte functionality. Eur J Immunol. 2012;42:3346–57.PubMedCrossRef Schroll A, Eller K, Feistritzer C, Nairz M, Sonnweber T, Moser PA, et al. Lipocalin-2 ameliorates granulocyte functionality. Eur J Immunol. 2012;42:3346–57.PubMedCrossRef
63.
go back to reference Shao S, Cao T, Jin L, Li B, Fang H, Zhang J, et al. Increased Lipocalin-2 contributes to the pathogenesis of psoriasis by modulating neutrophil chemotaxis and cytokine secretion. J Invest Dermatol. 2016;136:1418–28.PubMedCrossRef Shao S, Cao T, Jin L, Li B, Fang H, Zhang J, et al. Increased Lipocalin-2 contributes to the pathogenesis of psoriasis by modulating neutrophil chemotaxis and cytokine secretion. J Invest Dermatol. 2016;136:1418–28.PubMedCrossRef
65.
go back to reference Saiga H, Nishimura J, Kuwata H, Okuyama M, Matsumoto S, Sato S, et al. Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. J Immunol. 2008;181:8521–7.PubMedCrossRef Saiga H, Nishimura J, Kuwata H, Okuyama M, Matsumoto S, Sato S, et al. Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. J Immunol. 2008;181:8521–7.PubMedCrossRef
Metadata
Title
The regulation of TRPA1 expression and function by Th1 and Th2-type inflammation in human A549 lung epithelial cells
Authors
Samu Luostarinen
Mari Hämäläinen
Antti Pemmari
Eeva Moilanen
Publication date
29-06-2023
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 7/2023
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-023-01750-y

Other articles of this Issue 7/2023

Inflammation Research 7/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine