Skip to main content
Top
Published in: Inflammation Research 5/2018

01-05-2018 | Review

Vascular endothelium dysfunction: a conservative target in metabolic disorders

Authors: Shalini Jamwal, Saurabh Sharma

Published in: Inflammation Research | Issue 5/2018

Login to get access

Abstract

Aim

Vascular endothelium plays a role in capillary transport of nutrients and drugs and regulates angiogenesis, homeostasis, as well as vascular tone and permeability as a major regulator of local vascular homeostasis. The present study has been designed to investigate the role of endothelium in metabolic disorders.

Methods

The endothelium maintains the balance between vasodilatation and vasoconstriction, procoagulant and anticoagulant, prothrombotic and antithrombotic mechanisms.

Results

Diabetes mellitus causes the activation of aldose reductase, polyol pathway and advanced glycation-end-product formation that collectively affect the phosphorylation status and expression of endothelial nitric oxide synthatase (eNOS) and causes vascular endothelium dysfunction. Elevated homocysteine levels have been associated with increase in LDL oxidation, generation of hydrogen peroxides, superoxide anions that increased oxidative degradation of nitric oxide. Hyperhomocysteinemia has been reported to increase the endogenous competitive inhibitors of eNOS viz L-N-monomethyl arginine (L-NMMA) and asymmetric dimethyl arginine (ADMA) that may contribute to vascular endothelial dysfunction. Hypercholesterolemia stimulates oxidation of LDL cholesterol, release of endothelins, and generation of ROS. The increased cholesterol and triglyceride level and decreased protective HDL level, decreases the activity and expression of eNOS and disrupts the integrity of vascular endothelium, due to oxidative stress. Hypertension also stimulates release of endothelins, vasoconstrictor prostanoids, angiotensin II, inflammatory cytokines, xanthine oxidase and, thereby, reduces bioavailability of nitric oxide.

Conclusion

Thus, the cellular and molecular mechanisms underlying diabetes mellitus, hyperhomocysteinemia, hypercholesterolemia hypertension and hyperuricemia leads to an imbalance of phosphorylation and dephosphorylation status of lipid and protein kinase that cause modulation of vascular endothelial L-arginine/nitric oxide synthetase (eNOS), to produce vascular endothelium dysfunction.
Literature
1.
2.
go back to reference Janus A, et al., Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators Inflamm, 2016 Janus A, et al., Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators Inflamm, 2016
3.
go back to reference Hilfiker-Kleiner D, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128(3):p. 589–600.PubMedCrossRef Hilfiker-Kleiner D, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128(3):p. 589–600.PubMedCrossRef
4.
go back to reference Khan S, Arakawa O, Onoue Y. Neurotoxin production by a chloromonad Fibrocapsa japonica (Raphidophyceae). Oceanogr Lit Rev. 1997;4(44):345. Khan S, Arakawa O, Onoue Y. Neurotoxin production by a chloromonad Fibrocapsa japonica (Raphidophyceae). Oceanogr Lit Rev. 1997;4(44):345.
5.
go back to reference Rubanyi GM. Endothelium-derived relaxing and contracting factors. J Cell Biochem. 1991;46(1):27–36.PubMedCrossRef Rubanyi GM. Endothelium-derived relaxing and contracting factors. J Cell Biochem. 1991;46(1):27–36.PubMedCrossRef
6.
go back to reference Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integrative Compar Physiol. 2003;284(1):R1–R12.CrossRef Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integrative Compar Physiol. 2003;284(1):R1–R12.CrossRef
7.
go back to reference Tsutsumi Y, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Investig. 1999;104(7):925–35.PubMedPubMedCentralCrossRef Tsutsumi Y, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Investig. 1999;104(7):925–35.PubMedPubMedCentralCrossRef
8.
go back to reference Sandoo A, et al., The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4(1). Sandoo A, et al., The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4(1).
9.
go back to reference Tomanek RJ, Busch TL. Coordinated capillary and myocardial growth in response to thyroxine treatment. Anatomical Record. 1998;251(1):44–9.PubMedCrossRef Tomanek RJ, Busch TL. Coordinated capillary and myocardial growth in response to thyroxine treatment. Anatomical Record. 1998;251(1):44–9.PubMedCrossRef
10.
go back to reference Tirziu D, et al. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Investig. 2007;117(11):3188–97.PubMedPubMedCentralCrossRef Tirziu D, et al. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Investig. 2007;117(11):3188–97.PubMedPubMedCentralCrossRef
11.
go back to reference Dallabrida SM, et al. Adipose tissue growth and regression are regulated by angiopoietin-1. Biochem Biophys Res Commun. 2003;311(3):563–71.PubMedCrossRef Dallabrida SM, et al. Adipose tissue growth and regression are regulated by angiopoietin-1. Biochem Biophys Res Commun. 2003;311(3):563–71.PubMedCrossRef
12.
go back to reference Sunshine SB, et al., Endostatin lowers blood pressure via nitric oxide and prevents hypertension associated with VEGF inhibition. Proceedings of the National Academy of Sciences, 2012. 109(28): p. 11306–11311. Sunshine SB, et al., Endostatin lowers blood pressure via nitric oxide and prevents hypertension associated with VEGF inhibition. Proceedings of the National Academy of Sciences, 2012. 109(28): p. 11306–11311.
13.
go back to reference Martin JN, et al. Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med. 1998;338(14):948–54.PubMedCrossRef Martin JN, et al. Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med. 1998;338(14):948–54.PubMedCrossRef
14.
go back to reference Greene AK, Puder M. Partial hepatectomy in the mouse: technique and perioperative management. J Invest Surg. 2003;16(2):99–102.PubMedCrossRef Greene AK, Puder M. Partial hepatectomy in the mouse: technique and perioperative management. J Invest Surg. 2003;16(2):99–102.PubMedCrossRef
15.
go back to reference Lerman A, Burnett J Jr. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86(6 Suppl):III12–I19.PubMed Lerman A, Burnett J Jr. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86(6 Suppl):III12–I19.PubMed
16.
go back to reference Hadi HA, Carr CS, Suwaidi JA. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascular Health Risk Manag. 2005;1(3):183. Hadi HA, Carr CS, Suwaidi JA. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascular Health Risk Manag. 2005;1(3):183.
17.
go back to reference Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.PubMedCrossRef Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.PubMedCrossRef
18.
go back to reference Miller C, et al. Tumor necrosis factor-α levels in adipose tissue of lean and obese cats. J Nutr. 1998;128(12):2751S–2752S.PubMedCrossRef Miller C, et al. Tumor necrosis factor-α levels in adipose tissue of lean and obese cats. J Nutr. 1998;128(12):2751S–2752S.PubMedCrossRef
19.
go back to reference Fernandes G, et al. Immune response in the mutant diabetic C57BL/Ks-dt + mouse. Discrepancies between in vitro and in vivo immunological assays. J Clin Investig. 1978;61(2):243.PubMedPubMedCentralCrossRef Fernandes G, et al. Immune response in the mutant diabetic C57BL/Ks-dt + mouse. Discrepancies between in vitro and in vivo immunological assays. J Clin Investig. 1978;61(2):243.PubMedPubMedCentralCrossRef
20.
go back to reference Chandra R. Cell-mediated immunity in genetically obese C57BL/6J ob/ob) mice. Am J Clin Nutr. 1980;33(1):13–6.PubMedCrossRef Chandra R. Cell-mediated immunity in genetically obese C57BL/6J ob/ob) mice. Am J Clin Nutr. 1980;33(1):13–6.PubMedCrossRef
21.
go back to reference Khovidhunkit W, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004;45(7):1169–96.PubMedCrossRef Khovidhunkit W, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004;45(7):1169–96.PubMedCrossRef
22.
go back to reference Rosenson RS, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13(1):48–60.PubMedCrossRef Rosenson RS, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13(1):48–60.PubMedCrossRef
23.
go back to reference Goffredo M, et al. Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: a multiethnic study. Hepatology. 2016;63(1):117–25.PubMedCrossRef Goffredo M, et al. Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: a multiethnic study. Hepatology. 2016;63(1):117–25.PubMedCrossRef
24.
go back to reference Huang A, et al. Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem. 2000;275(23):17399–406.PubMedCrossRef Huang A, et al. Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem. 2000;275(23):17399–406.PubMedCrossRef
25.
go back to reference Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology. 2003;144(6):2195–200.PubMedCrossRef Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology. 2003;144(6):2195–200.PubMedCrossRef
26.
go back to reference Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction a marker of atherosclerotic risk. Arteriosclerosis, thrombosis, and vascular biology. 2003. 23(2):168–75. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction a marker of atherosclerotic risk. Arteriosclerosis, thrombosis, and vascular biology. 2003. 23(2):168–75.
27.
go back to reference Chatrchyan S, et al., The CMS experiment at the CERN LHC. 2008. Chatrchyan S, et al., The CMS experiment at the CERN LHC. 2008.
28.
go back to reference Ventura A, et al., Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(28): p. 10380–10385. Ventura A, et al., Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(28): p. 10380–10385.
29.
go back to reference Boldyrev A. Molecular mechanisms of homocysteine toxicity. Biochemistry. 2009;74(6):589–98.PubMed Boldyrev A. Molecular mechanisms of homocysteine toxicity. Biochemistry. 2009;74(6):589–98.PubMed
30.
go back to reference Muravyov A, Tikhomirova I. Role Ca2+ in mechanisms of the red blood cells microrheological changes, in Calcium Signaling. 2012, Springer. 1017–38. Muravyov A, Tikhomirova I. Role Ca2+ in mechanisms of the red blood cells microrheological changes, in Calcium Signaling. 2012, Springer. 1017–38.
31.
go back to reference PINO P, et al., Redox-dependent apoptosis in human endothelial cells after adhesion of plasmodium falciparum-infected erythrocytes. Annals of the New York Academy of Sciences, 2003. 1010(1):582–6. PINO P, et al., Redox-dependent apoptosis in human endothelial cells after adhesion of plasmodium falciparum-infected erythrocytes. Annals of the New York Academy of Sciences, 2003. 1010(1):582–6.
32.
go back to reference Pepys MB, Baltz ML. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol. 1983;34:141–212.PubMedCrossRef Pepys MB, Baltz ML. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol. 1983;34:141–212.PubMedCrossRef
33.
35.
go back to reference Ridker PM, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347(20):1557–65.PubMedCrossRef Ridker PM, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347(20):1557–65.PubMedCrossRef
36.
go back to reference Ridker PM, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation. 1999;100(3):p. 230–5.PubMedCrossRef Ridker PM, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation. 1999;100(3):p. 230–5.PubMedCrossRef
37.
go back to reference Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004;116(6):9–16.CrossRef Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004;116(6):9–16.CrossRef
38.
go back to reference Nissen SE, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352(1):29–38.PubMedCrossRef Nissen SE, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352(1):29–38.PubMedCrossRef
39.
go back to reference Ridker PM, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352(1):20–8.PubMedCrossRef Ridker PM, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352(1):20–8.PubMedCrossRef
40.
go back to reference Ignarro LJ, Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diabetes Rep. 2005;5(1):17–23.CrossRef Ignarro LJ, Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diabetes Rep. 2005;5(1):17–23.CrossRef
41.
go back to reference Valle I, et al. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66(3):562–73.PubMedCrossRef Valle I, et al. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66(3):562–73.PubMedCrossRef
42.
go back to reference Zimmet P, Alberti K, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.PubMedCrossRef Zimmet P, Alberti K, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.PubMedCrossRef
43.
go back to reference Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J. 2005;172(2):213–26.CrossRef Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J. 2005;172(2):213–26.CrossRef
44.
go back to reference Guillausseau P-J, et al. Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 2008;34:p. S43-S48.CrossRef Guillausseau P-J, et al. Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 2008;34:p. S43-S48.CrossRef
45.
go back to reference Min-Jean Y, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IkappaB kinase-beta. Nature. 1998;396(6706):77.CrossRef Min-Jean Y, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IkappaB kinase-beta. Nature. 1998;396(6706):77.CrossRef
46.
go back to reference Aguirre V, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2000;275(12):9047–54.PubMedCrossRef Aguirre V, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2000;275(12):9047–54.PubMedCrossRef
47.
go back to reference Hotamisligil GS, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science. 1996;271(5249):665.PubMedCrossRef Hotamisligil GS, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science. 1996;271(5249):665.PubMedCrossRef
48.
go back to reference Aguirre V, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7.PubMedCrossRef Aguirre V, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531–7.PubMedCrossRef
49.
go back to reference Paz K, et al. A Molecular Basis for Insulin Resistance elevated serine/threonine phosphorylation of irs-1 and irs-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272(47):29911–8.PubMedCrossRef Paz K, et al. A Molecular Basis for Insulin Resistance elevated serine/threonine phosphorylation of irs-1 and irs-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272(47):29911–8.PubMedCrossRef
50.
go back to reference Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vascular health risk management. 2007;3(6):p. 853.PubMedPubMedCentral Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vascular health risk management. 2007;3(6):p. 853.PubMedPubMedCentral
51.
go back to reference Muntean C, et al. Biochemistry of hyperglycemia induced vascular dysfunction. Roman J Diabet Nutr Metab Dis. 2013;20(4):419–25. Muntean C, et al. Biochemistry of hyperglycemia induced vascular dysfunction. Roman J Diabet Nutr Metab Dis. 2013;20(4):419–25.
52.
go back to reference Ishii H, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272(5262):728.PubMedCrossRef Ishii H, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272(5262):728.PubMedCrossRef
54.
go back to reference Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(1):46–56.PubMedCrossRef Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(1):46–56.PubMedCrossRef
55.
go back to reference Schoch CL, et al., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 2012. 109(16): p. 6241–6246. Schoch CL, et al., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 2012. 109(16): p. 6241–6246.
56.
go back to reference Headley CA, et al. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochem Pharmacol. 2016;104:108–17.PubMedPubMedCentralCrossRef Headley CA, et al. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochem Pharmacol. 2016;104:108–17.PubMedPubMedCentralCrossRef
57.
go back to reference Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabetic Med. 2009;26(12):1185–92.PubMedCrossRef Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabetic Med. 2009;26(12):1185–92.PubMedCrossRef
58.
go back to reference Musicki B, et al., Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(33): p. 11870–11875. Musicki B, et al., Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(33): p. 11870–11875.
59.
go back to reference McGowan TA, et al. Stimulation of urinary TGF-β and isoprostanes in response to hyperglycemia in humans. Clin J Am Soc Nephrol. 2006;1(2):263–8.PubMedCrossRef McGowan TA, et al. Stimulation of urinary TGF-β and isoprostanes in response to hyperglycemia in humans. Clin J Am Soc Nephrol. 2006;1(2):263–8.PubMedCrossRef
60.
go back to reference Gabriely I, et al. Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002;160(1):115–22.PubMedCrossRef Gabriely I, et al. Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002;160(1):115–22.PubMedCrossRef
61.
go back to reference Gage MC, et al. Endothelium-specific insulin resistance leads to accelerated atherosclerosis in areas with disturbed flow patterns: a role for reactive oxygen species. Atherosclerosis. 2013;230(1):131–9.PubMedCrossRef Gage MC, et al. Endothelium-specific insulin resistance leads to accelerated atherosclerosis in areas with disturbed flow patterns: a role for reactive oxygen species. Atherosclerosis. 2013;230(1):131–9.PubMedCrossRef
62.
go back to reference Hançer NJ, et al. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem. 2014;289(18):12467–84.PubMedPubMedCentralCrossRef Hançer NJ, et al. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem. 2014;289(18):12467–84.PubMedPubMedCentralCrossRef
63.
go back to reference Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: Role of insulin therapy. Pharmacology therapeutics. 2012;136(2):p. 175–85.PubMedCrossRef Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: Role of insulin therapy. Pharmacology therapeutics. 2012;136(2):p. 175–85.PubMedCrossRef
64.
go back to reference Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertension Rep. 2012;14(6):517–31.CrossRef Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertension Rep. 2012;14(6):517–31.CrossRef
65.
go back to reference Li H, et al. Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-κB pathway in rat aorta. Int J Cardiol. 2011;152(2):218–24.PubMedCrossRef Li H, et al. Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-κB pathway in rat aorta. Int J Cardiol. 2011;152(2):218–24.PubMedCrossRef
66.
go back to reference Inoguchi T, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.PubMedCrossRef Inoguchi T, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.PubMedCrossRef
67.
go back to reference Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol. 2010;9(1):1.CrossRef Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol. 2010;9(1):1.CrossRef
68.
go back to reference Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164(2):213–23.PubMedPubMedCentralCrossRef Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164(2):213–23.PubMedPubMedCentralCrossRef
69.
go back to reference Beral V, et al. Ovarian cancer and hormone replacement therapy–Authors’ reply. The Lancet. 2007;370(9591):932–3.CrossRef Beral V, et al. Ovarian cancer and hormone replacement therapy–Authors’ reply. The Lancet. 2007;370(9591):932–3.CrossRef
70.
go back to reference Casadei B. The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp Physiol. 2006;91(6):943–55.PubMedCrossRef Casadei B. The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp Physiol. 2006;91(6):943–55.PubMedCrossRef
71.
go back to reference Tan KC, et al. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes/Metab Res Rev. 2002;18(1):71–6.CrossRef Tan KC, et al. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes/Metab Res Rev. 2002;18(1):71–6.CrossRef
72.
go back to reference Kim J-a, et al. Reciprocal relationships between insulin resistance and endothelial dysfunction. Circulation. 2006;113(15):1888–904.PubMedCrossRef Kim J-a, et al. Reciprocal relationships between insulin resistance and endothelial dysfunction. Circulation. 2006;113(15):1888–904.PubMedCrossRef
73.
go back to reference Williams SB, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74.PubMedCrossRef Williams SB, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74.PubMedCrossRef
74.
go back to reference Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Investig. 1991;87(5):1643.PubMedPubMedCentralCrossRef Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Investig. 1991;87(5):1643.PubMedPubMedCentralCrossRef
75.
go back to reference Title LM, et al. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol. 2000;36(7):2185–91.PubMedCrossRef Title LM, et al. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol. 2000;36(7):2185–91.PubMedCrossRef
76.
go back to reference Pieper GM, Moore-Hilton G, Roza AM. Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat. Life Sci. 1996;58(9):PL147–PL152.PubMedCrossRef Pieper GM, Moore-Hilton G, Roza AM. Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat. Life Sci. 1996;58(9):PL147–PL152.PubMedCrossRef
77.
go back to reference Du XL, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig. 2001;108(9):1341–8.PubMedPubMedCentralCrossRef Du XL, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig. 2001;108(9):1341–8.PubMedPubMedCentralCrossRef
78.
go back to reference Veves A, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47(3):457–63.PubMedCrossRef Veves A, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47(3):457–63.PubMedCrossRef
79.
go back to reference Boudi BF. Noncoronary Atherosclerosis. Medscape. Boudi BF. Noncoronary Atherosclerosis. Medscape.
80.
go back to reference Brustolin S, Giugliani R, Félix T. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res. 2010;43(1):1–7.PubMedCrossRef Brustolin S, Giugliani R, Félix T. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res. 2010;43(1):1–7.PubMedCrossRef
81.
go back to reference Jayaraman A, Pike CJ. Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Current diabetes reports. 2014;14(4):1–9.CrossRef Jayaraman A, Pike CJ. Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Current diabetes reports. 2014;14(4):1–9.CrossRef
82.
go back to reference Huang T, et al. Cardiovascular pathogenesis in hyperhomocysteinemia. Asia Pacific J Clin Nutr. 2008;17(1):8–16. Huang T, et al. Cardiovascular pathogenesis in hyperhomocysteinemia. Asia Pacific J Clin Nutr. 2008;17(1):8–16.
83.
go back to reference Corretti MC, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–65.PubMedCrossRef Corretti MC, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–65.PubMedCrossRef
84.
go back to reference Tasatargil A, Sadan G, Karasu E. Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulmonary pharmacology & therapeutics, 2007. 20(3):265–72. Tasatargil A, Sadan G, Karasu E. Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulmonary pharmacology & therapeutics, 2007. 20(3):265–72.
85.
go back to reference Yan TT, et al. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling. Clin Exp Pharmacol Physiol. 2010;37(11):1071–7.PubMedCrossRef Yan TT, et al. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling. Clin Exp Pharmacol Physiol. 2010;37(11):1071–7.PubMedCrossRef
86.
go back to reference Lima CP, et al. Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets. J Nutr. 2006;136(8):2141–7.PubMedCrossRef Lima CP, et al. Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets. J Nutr. 2006;136(8):2141–7.PubMedCrossRef
87.
go back to reference Jahangir E, et al. The effect of L-arginine and creatine on vascular function and homocysteine metabolism. Vascular Med. 2009;14(3):239–48.CrossRef Jahangir E, et al. The effect of L-arginine and creatine on vascular function and homocysteine metabolism. Vascular Med. 2009;14(3):239–48.CrossRef
88.
go back to reference Lentz SR, Rodionov RN, Dayal S. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atherosclerosis Supplements. 2003;4(4):61–5.PubMedCrossRef Lentz SR, Rodionov RN, Dayal S. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atherosclerosis Supplements. 2003;4(4):61–5.PubMedCrossRef
89.
go back to reference Sydow K, et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovascular Res. 2003;57(1):244–52.CrossRef Sydow K, et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovascular Res. 2003;57(1):244–52.CrossRef
90.
go back to reference Tawakol A, et al. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation. 1997;95(5):1119–21.PubMedCrossRef Tawakol A, et al. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation. 1997;95(5):1119–21.PubMedCrossRef
91.
go back to reference Tyagi N, et al. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol. 2005;289(6):H2649-H2656.CrossRef Tyagi N, et al. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol. 2005;289(6):H2649-H2656.CrossRef
92.
go back to reference Skolnick HS, et al. The natural history of peanut allergy. J Allergy Clin Immunol. 2001;107(2):367–74.PubMedCrossRef Skolnick HS, et al. The natural history of peanut allergy. J Allergy Clin Immunol. 2001;107(2):367–74.PubMedCrossRef
93.
go back to reference Lacy P. Secretion of cytokines and chemokines by innate immune cells. 2015: Frontiers Media SA. Lacy P. Secretion of cytokines and chemokines by innate immune cells. 2015: Frontiers Media SA.
95.
go back to reference Hong S-Y, Yang D-H, Chang S-K. The relationship between plasma homocysteine and amino acid concentrations in patients with end-stage renal disease. J Renal Nutr. 1998;8(1):34–9.CrossRef Hong S-Y, Yang D-H, Chang S-K. The relationship between plasma homocysteine and amino acid concentrations in patients with end-stage renal disease. J Renal Nutr. 1998;8(1):34–9.CrossRef
96.
go back to reference van Dijk SC, et al., Effect of vitamin B12 and folic acid supplementation on biomarkers of endothelial function and inflammation among elderly individuals with hyperhomocysteinemia. Vascular Medicine, 2016;1358863 × 15622281. van Dijk SC, et al., Effect of vitamin B12 and folic acid supplementation on biomarkers of endothelial function and inflammation among elderly individuals with hyperhomocysteinemia. Vascular Medicine, 2016;1358863 × 15622281.
97.
go back to reference Wang X-C, et al. ER stress mediates homocysteine-induced endothelial dysfunction: Modulation of IK Ca and SK Ca channels. Atherosclerosis. 2015;242(1):191–8.PubMedCrossRef Wang X-C, et al. ER stress mediates homocysteine-induced endothelial dysfunction: Modulation of IK Ca and SK Ca channels. Atherosclerosis. 2015;242(1):191–8.PubMedCrossRef
98.
go back to reference Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertension. 2008;21(5):500–8.CrossRef Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertension. 2008;21(5):500–8.CrossRef
99.
go back to reference Sarnak MJ, et al. Kidney disease as a risk factor for development of cardiovascular disease a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108(17):2154–69.PubMedCrossRef Sarnak MJ, et al. Kidney disease as a risk factor for development of cardiovascular disease a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108(17):2154–69.PubMedCrossRef
100.
go back to reference Arora P, Arora A, Sharma S. Vascular endothelium dysfunction and hypertension: insight on molecular basics. Arora P, Arora A, Sharma S. Vascular endothelium dysfunction and hypertension: insight on molecular basics.
101.
102.
go back to reference Uehata M, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4.PubMedCrossRef Uehata M, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4.PubMedCrossRef
103.
go back to reference Dzau VJ. Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol. 1987;59(2):A59–A65.CrossRef Dzau VJ. Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol. 1987;59(2):A59–A65.CrossRef
104.
go back to reference Nishiyama A, et al. New approaches to blockade of the renin-angiotensin-aldosterone system: mineralocorticoid-receptor blockers exert antihypertensive and renoprotective effects independently of the renin-angiotensin system. J Pharmacol Sci. 2010;113(4):310–4.PubMedCrossRef Nishiyama A, et al. New approaches to blockade of the renin-angiotensin-aldosterone system: mineralocorticoid-receptor blockers exert antihypertensive and renoprotective effects independently of the renin-angiotensin system. J Pharmacol Sci. 2010;113(4):310–4.PubMedCrossRef
105.
go back to reference Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.PubMedCrossRef Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.PubMedCrossRef
106.
go back to reference Nishimura H, et al. The effects of angiotensin metabolites on the regulation of coagulation and fibrinolysis in cultured rat aortic endothelial cells. Thrombosis Haemostasis. 1999;82(5):1516–21.PubMed Nishimura H, et al. The effects of angiotensin metabolites on the regulation of coagulation and fibrinolysis in cultured rat aortic endothelial cells. Thrombosis Haemostasis. 1999;82(5):1516–21.PubMed
107.
go back to reference Nishimura H, et al. Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thrombosis Haemostasis. 1997;77(6):1189–95.PubMedCrossRef Nishimura H, et al. Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thrombosis Haemostasis. 1997;77(6):1189–95.PubMedCrossRef
108.
go back to reference Ishida M, et al. Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ Res. 1995;77(6):1053–9.PubMedCrossRef Ishida M, et al. Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ Res. 1995;77(6):1053–9.PubMedCrossRef
109.
go back to reference Badyal D, Lata H, Dadhich A. Animal models of hypertension and effect of drugs. Indian J Pharmacol. 2003;35(6):349–62. Badyal D, Lata H, Dadhich A. Animal models of hypertension and effect of drugs. Indian J Pharmacol. 2003;35(6):349–62.
110.
go back to reference Griendling KK, et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141–8.PubMedCrossRef Griendling KK, et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141–8.PubMedCrossRef
111.
go back to reference Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame a decade of hypertrophic signaling hits. Circ Res. 2006;98(6):730–42.PubMedCrossRef Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame a decade of hypertrophic signaling hits. Circ Res. 2006;98(6):730–42.PubMedCrossRef
112.
go back to reference Burnstock G. Purinergic nerves. Pharmacol Rev. 1972;24(3):509–81.PubMed Burnstock G. Purinergic nerves. Pharmacol Rev. 1972;24(3):509–81.PubMed
113.
go back to reference Vecchione C, et al. Protection from angiotensin II–mediated vasculotoxic and hypertensive response in mice lacking PI3Kγ. J Exp Med. 2005;201(8):1217–28.PubMedPubMedCentralCrossRef Vecchione C, et al. Protection from angiotensin II–mediated vasculotoxic and hypertensive response in mice lacking PI3Kγ. J Exp Med. 2005;201(8):1217–28.PubMedPubMedCentralCrossRef
114.
go back to reference Rubattu S, Stanzione R, Volpe M. Mitochondrial dysfunction contributes to hypertensive target organ damage: lessons from an animal model of human disease. Oxidative Medicine and Cellular Longevity, 2016. Rubattu S, Stanzione R, Volpe M. Mitochondrial dysfunction contributes to hypertensive target organ damage: lessons from an animal model of human disease. Oxidative Medicine and Cellular Longevity, 2016.
115.
go back to reference Maury E, Brichard S. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1–16.PubMedCrossRef Maury E, Brichard S. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314(1):1–16.PubMedCrossRef
116.
go back to reference Harrington EO, et al. Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a possible role of p38α. Am J Physiol Lung Cell Mol Physiol. 2000;279(4):L733–L742.PubMedCrossRef Harrington EO, et al. Adenosine induces endothelial apoptosis by activating protein tyrosine phosphatase: a possible role of p38α. Am J Physiol Lung Cell Mol Physiol. 2000;279(4):L733–L742.PubMedCrossRef
117.
go back to reference Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxidants Redox Signal. 2005;7(9–10):1302–14.CrossRef Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxidants Redox Signal. 2005;7(9–10):1302–14.CrossRef
119.
go back to reference Hausding M, et al., Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Animal Models. Hausding M, et al., Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Animal Models.
120.
go back to reference Jin M, et al., Uric acid, hyperuricemia and vascular diseases. Frontiers in bioscience: a journal and virtual library. 2012. 17:656. Jin M, et al., Uric acid, hyperuricemia and vascular diseases. Frontiers in bioscience: a journal and virtual library. 2012. 17:656.
122.
go back to reference Su J, et al. Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Arch Pharmacal Res. 2014;37(10):1336–44.CrossRef Su J, et al. Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Arch Pharmacal Res. 2014;37(10):1336–44.CrossRef
123.
go back to reference Wu X-H, et al. Riparoside B and timosaponin J, two steroidal glycosides from Smilax riparia, resist to hyperuricemia based on URAT1 in hyperuricemic mice. Phytomedicine. 2014;21(10):1196–201.PubMedCrossRef Wu X-H, et al. Riparoside B and timosaponin J, two steroidal glycosides from Smilax riparia, resist to hyperuricemia based on URAT1 in hyperuricemic mice. Phytomedicine. 2014;21(10):1196–201.PubMedCrossRef
124.
125.
go back to reference Puddu P, et al. The relationships among hyperuricemia, endothelial dysfunction, and cardiovascular diseases: molecular mechanisms and clinical implications. J Cardiol. 2012;59(3):235–42.PubMedCrossRef Puddu P, et al. The relationships among hyperuricemia, endothelial dysfunction, and cardiovascular diseases: molecular mechanisms and clinical implications. J Cardiol. 2012;59(3):235–42.PubMedCrossRef
126.
go back to reference Puddu P, et al. The molecular sources of reactive oxygen species in hypertension. Blood Pressure. 2008;17(2):70–7.PubMedCrossRef Puddu P, et al. The molecular sources of reactive oxygen species in hypertension. Blood Pressure. 2008;17(2):70–7.PubMedCrossRef
127.
go back to reference Stocker R, Keaney J. New insights on oxidative stress in the artery wall. J Thromb Haemost. 2005;3(8):1825–34.PubMedCrossRef Stocker R, Keaney J. New insights on oxidative stress in the artery wall. J Thromb Haemost. 2005;3(8):1825–34.PubMedCrossRef
128.
129.
go back to reference Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation. 2002;9(3):161–75.PubMedCrossRef Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation. 2002;9(3):161–75.PubMedCrossRef
130.
go back to reference Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555(3):589–606.PubMedCrossRef Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555(3):589–606.PubMedCrossRef
131.
go back to reference George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5(1):265–72.PubMedPubMedCentralCrossRef George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5(1):265–72.PubMedPubMedCentralCrossRef
133.
go back to reference Panis C, et al. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treatment. 2012;133(1):89–97.CrossRef Panis C, et al. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treatment. 2012;133(1):89–97.CrossRef
134.
go back to reference Edwards NL. The role of hyperuricemia in vascular disorders. Curr Opin Rheumatol. 2009;21(2):132–7.PubMedCrossRef Edwards NL. The role of hyperuricemia in vascular disorders. Curr Opin Rheumatol. 2009;21(2):132–7.PubMedCrossRef
135.
go back to reference Kanellis J, Kang D-H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. In: Seminars in nephrology. 2005. Elsevier. Kanellis J, Kang D-H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. In: Seminars in nephrology. 2005. Elsevier.
136.
go back to reference Kanellis J, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41(6):1287–93.PubMedCrossRef Kanellis J, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41(6):1287–93.PubMedCrossRef
137.
go back to reference Castillo-Martínez D, et al. Levels of uric acid may predict the future development of pulmonary hypertension in systemic lupus erythematosus: a seven-year follow-up study. Lupus. 2016;25(1):61–6.PubMedCrossRef Castillo-Martínez D, et al. Levels of uric acid may predict the future development of pulmonary hypertension in systemic lupus erythematosus: a seven-year follow-up study. Lupus. 2016;25(1):61–6.PubMedCrossRef
Metadata
Title
Vascular endothelium dysfunction: a conservative target in metabolic disorders
Authors
Shalini Jamwal
Saurabh Sharma
Publication date
01-05-2018
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 5/2018
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-018-1129-8

Other articles of this Issue 5/2018

Inflammation Research 5/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine