Skip to main content
Top
Published in: Inflammation Research 9/2013

01-09-2013 | Review

Macrophages: plastic solutions to environmental heterogeneity

Author: Selma Giorgio

Published in: Inflammation Research | Issue 9/2013

Login to get access

Abstract

Introduction

Macrophages are among the oldest cell types in the animal kingdom, and they have a long evolutionary history and experience various evolutionary pressures. It was clear from the earliest studies that variations exist in macrophage populations. Macrophages are known to adapt to their microenvironment. Although the paradigm for macrophage plasticity is their flexible program driven by environmental signals, the most common working hypothesis is that of a dichotomy between two major macrophage phenotypes, M1 and M2.

Methods

A PubMed and Web of Science databases search was performed providing evidences that numerous authors have expanded the concept of plasticity and conducted experimental studies focusing on the complex program of phenotypes.

Results and Conclusions

This review evaluated a number of issues relating to macrophage plasticity, environmental heterogeneity and the potential for changes to be reversal or non reversal in an ecological context. The ecological principles of phenotypic plasticity which can assist in evaluating and interpreting macrophage experimental data are discussed as well.
Literature
1.
go back to reference Ottaviani E, Franceschi C. The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol Today. 1997;18:169–74.PubMedCrossRef Ottaviani E, Franceschi C. The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol Today. 1997;18:169–74.PubMedCrossRef
2.
go back to reference Ottaviani E, Malagoli D, Grimaldi A, De Eguileor M. The case of the “serfdom” condition of phagocytic immune cells. Invert Surv J. 2012;9:134–8. Ottaviani E, Malagoli D, Grimaldi A, De Eguileor M. The case of the “serfdom” condition of phagocytic immune cells. Invert Surv J. 2012;9:134–8.
3.
go back to reference Desjardins M, Houde M, Gagnon E. Phagocytosis: the convoluted way from nutrition to adaptaive immunity. Immunol Rev. 2005;207:158–65.PubMedCrossRef Desjardins M, Houde M, Gagnon E. Phagocytosis: the convoluted way from nutrition to adaptaive immunity. Immunol Rev. 2005;207:158–65.PubMedCrossRef
4.
go back to reference Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.PubMedCrossRef Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.PubMedCrossRef
5.
6.
go back to reference Metchnikoff E. Lectures on the comparative pathology of inflammation. London: Trench; 1893. Metchnikoff E. Lectures on the comparative pathology of inflammation. London: Trench; 1893.
7.
go back to reference Silverstein AM. A history of immunology. San Diego: Academic; 1989. p. 40–56. Silverstein AM. A history of immunology. San Diego: Academic; 1989. p. 40–56.
8.
go back to reference Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol. 2002;72:621–7.PubMed Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol. 2002;72:621–7.PubMed
9.
go back to reference Habicht GS. Primordial immunity: foundations for the vertebrate immune system. In: Beck C, Habicht GS, Cooper EL, Marchalonis JJ, editors. The vertebrate immune system, New York: New York Academy of Sciences; 1994. pp. ix–xi. Habicht GS. Primordial immunity: foundations for the vertebrate immune system. In: Beck C, Habicht GS, Cooper EL, Marchalonis JJ, editors. The vertebrate immune system, New York: New York Academy of Sciences; 1994. pp. ix–xi.
10.
go back to reference Maurya MR, Benner C, Pradervand S, Glass C, Subramaniam S. Systems biology of macrophages. Adv Exp Med Biol. 2007;598:62–79.PubMedCrossRef Maurya MR, Benner C, Pradervand S, Glass C, Subramaniam S. Systems biology of macrophages. Adv Exp Med Biol. 2007;598:62–79.PubMedCrossRef
11.
go back to reference Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID. Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol. 2011;29:527–85.PubMedCrossRef Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID. Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol. 2011;29:527–85.PubMedCrossRef
12.
go back to reference Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.PubMedCrossRef Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.PubMedCrossRef
13.
go back to reference Halmilton JA. Therapeutic potential of targeting inflammation. Inflamm Res. 2013;62:653–65.CrossRef Halmilton JA. Therapeutic potential of targeting inflammation. Inflamm Res. 2013;62:653–65.CrossRef
14.
go back to reference Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.PubMedCrossRef Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.PubMedCrossRef
15.
go back to reference Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRef Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRef
16.
go back to reference Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86:1105–9.PubMedCrossRef Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86:1105–9.PubMedCrossRef
17.
go back to reference Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.PubMedCrossRef Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.PubMedCrossRef
18.
go back to reference Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12:1035–44.PubMedCrossRef Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12:1035–44.PubMedCrossRef
19.
go back to reference Weidenbusch M, Anders H-J. Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis. J Innate Immun. 2012;4:463–77.PubMedCrossRef Weidenbusch M, Anders H-J. Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis. J Innate Immun. 2012;4:463–77.PubMedCrossRef
20.
go back to reference Hamilton TA. Molecular basis of macrophage activation: from gene expression to phenotypic diversity. In: Burke B, Lewis CE, editors. The macrophage. New York: Oxford University Press; 2002. p. 74–102. Hamilton TA. Molecular basis of macrophage activation: from gene expression to phenotypic diversity. In: Burke B, Lewis CE, editors. The macrophage. New York: Oxford University Press; 2002. p. 74–102.
21.
go back to reference Grage-Griebenow E, Flad HD, Ernst M. Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol. 2001;69:11–20.PubMed Grage-Griebenow E, Flad HD, Ernst M. Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol. 2001;69:11–20.PubMed
22.
go back to reference Erwig LP, Kluth DC, Rees AJ. Macrophage heterogeneity in renal inflammation. Nephrol Dial Transplant. 2003;18:1962–5.PubMedCrossRef Erwig LP, Kluth DC, Rees AJ. Macrophage heterogeneity in renal inflammation. Nephrol Dial Transplant. 2003;18:1962–5.PubMedCrossRef
23.
24.
go back to reference Kono H, Fujii H, Asakawa M, Yamamoto M, Maki A, Matsuda M, et al. Functional heterogeneity of the Kupffer cell population is involved in the mechanism of gadolinium chloride in rats administered endotoxin. J Surg Res. 2002;106:179–87.PubMedCrossRef Kono H, Fujii H, Asakawa M, Yamamoto M, Maki A, Matsuda M, et al. Functional heterogeneity of the Kupffer cell population is involved in the mechanism of gadolinium chloride in rats administered endotoxin. J Surg Res. 2002;106:179–87.PubMedCrossRef
25.
go back to reference He Y, Sadahiro T, Noh SI, Wang H, Todo T, Chai NN. Flow cytometric isolation and phenotypic characterization of two subsets of ED2(+) (CD163) hepatic macrophages in rats. Hepatol Res. 2009;39:1208–18.PubMedCrossRef He Y, Sadahiro T, Noh SI, Wang H, Todo T, Chai NN. Flow cytometric isolation and phenotypic characterization of two subsets of ED2(+) (CD163) hepatic macrophages in rats. Hepatol Res. 2009;39:1208–18.PubMedCrossRef
26.
go back to reference Kinoshita M, Uchida T, Sato A, Nakashima M, Nakashima H, Shono S, et al. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J Hepatol. 2010;53:903–10.PubMedCrossRef Kinoshita M, Uchida T, Sato A, Nakashima M, Nakashima H, Shono S, et al. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J Hepatol. 2010;53:903–10.PubMedCrossRef
27.
go back to reference Movita D, Kreefft K, Biesta P, van Oudenaren A, Leenen PJ, Janssen HL, et al. Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages. J Leukoc Biol. 2012;92:723–33.PubMedCrossRef Movita D, Kreefft K, Biesta P, van Oudenaren A, Leenen PJ, Janssen HL, et al. Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages. J Leukoc Biol. 2012;92:723–33.PubMedCrossRef
29.
go back to reference den Haan JM, Kraal G. Innate immune functions of macrophage subpopulations in the spleen. J Innate Immun. 2012;4:437–45.CrossRef den Haan JM, Kraal G. Innate immune functions of macrophage subpopulations in the spleen. J Innate Immun. 2012;4:437–45.CrossRef
30.
go back to reference Gordon S. Innate immune functions of macrophages in different tissue environments. J Innate Immun. 2012;4:409–10.PubMedCrossRef Gordon S. Innate immune functions of macrophages in different tissue environments. J Innate Immun. 2012;4:409–10.PubMedCrossRef
31.
go back to reference Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23:901–44.PubMedCrossRef Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23:901–44.PubMedCrossRef
32.
go back to reference Liddiard K, Rosas M, Davies LC, Jones SA, Taylor PR. Macrophage heterogeneity and acute inflammation. Eur J Immunol. 2011;41:2503–8.PubMedCrossRef Liddiard K, Rosas M, Davies LC, Jones SA, Taylor PR. Macrophage heterogeneity and acute inflammation. Eur J Immunol. 2011;41:2503–8.PubMedCrossRef
33.
go back to reference Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity. 2011;35:323–35.PubMedCrossRef Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity. 2011;35:323–35.PubMedCrossRef
34.
go back to reference Rutherford MS, Witsel A, Schook LB. Mechanisms generating functionally heterogeneous macrophages: chaos revisited. J Leukoc Biol. 1993;53:602–18.PubMed Rutherford MS, Witsel A, Schook LB. Mechanisms generating functionally heterogeneous macrophages: chaos revisited. J Leukoc Biol. 1993;53:602–18.PubMed
35.
go back to reference Schust DJ, Magamatsu T. Does the classical M1/M2 dichotomy reflect the functional phenotypes of human decidual macrophages? Expert Rev Obstr Gynecol. 2011;4:377–80.CrossRef Schust DJ, Magamatsu T. Does the classical M1/M2 dichotomy reflect the functional phenotypes of human decidual macrophages? Expert Rev Obstr Gynecol. 2011;4:377–80.CrossRef
36.
go back to reference Porcheray F, Viaud S, Rimaniol AC, Léone C, Samah B, Dereuddre-Bosquet N, et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol. 2005;142:481–9.PubMed Porcheray F, Viaud S, Rimaniol AC, Léone C, Samah B, Dereuddre-Bosquet N, et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol. 2005;142:481–9.PubMed
37.
go back to reference Mantovani A. Macrophage diversity and polarization: in vivo veritas. Blood. 2006;108:408–9.CrossRef Mantovani A. Macrophage diversity and polarization: in vivo veritas. Blood. 2006;108:408–9.CrossRef
38.
go back to reference Biswas SK, Chittezhath M, Shalova IN, Lim JY. Macrophage polarization and plasticity in health and disease. Immunol Res. 2012;53:11–24.PubMedCrossRef Biswas SK, Chittezhath M, Shalova IN, Lim JY. Macrophage polarization and plasticity in health and disease. Immunol Res. 2012;53:11–24.PubMedCrossRef
39.
go back to reference Daley JM, Reichner JS, Mahoney EJ, Manfield L, Henry WL Jr, Mastrofrancesco B, et al. Modulation of macrophage phenotype by soluble product(s) released from neutrophils. J Immunol. 2005;174:2265–72.PubMed Daley JM, Reichner JS, Mahoney EJ, Manfield L, Henry WL Jr, Mastrofrancesco B, et al. Modulation of macrophage phenotype by soluble product(s) released from neutrophils. J Immunol. 2005;174:2265–72.PubMed
40.
go back to reference Adamson S, Leitinger N. Phenotypic modulation of macrophages in response to plaque lipids. Curr Opin Lipidol. 2011;22:335–42.PubMedCrossRef Adamson S, Leitinger N. Phenotypic modulation of macrophages in response to plaque lipids. Curr Opin Lipidol. 2011;22:335–42.PubMedCrossRef
41.
go back to reference Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol. 2012;3:1.PubMedCrossRef Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol. 2012;3:1.PubMedCrossRef
42.
go back to reference Gratchev A, Schledzewski K, Guillot P, Goerdt S. Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol. 2001;14:272–9.PubMedCrossRef Gratchev A, Schledzewski K, Guillot P, Goerdt S. Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol. 2001;14:272–9.PubMedCrossRef
43.
go back to reference Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.PubMedCrossRef Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.PubMedCrossRef
44.
go back to reference Stein BE, Burr D, Constantinidis C, Laurienti PJ, Alex MM, Perrault TJ, et al. Semantic confusion regarding the development of multisensory integration: a practical solution. Eur J Neurosci. 2010;31:1713–20.PubMedCrossRef Stein BE, Burr D, Constantinidis C, Laurienti PJ, Alex MM, Perrault TJ, et al. Semantic confusion regarding the development of multisensory integration: a practical solution. Eur J Neurosci. 2010;31:1713–20.PubMedCrossRef
45.
go back to reference Huang H, Fletcher A, Niu Y, Wang TY, Yu L. Characterization of lipopolysaccharide-stimulated cytokine expression in macrophages and monocytes. Inflamm Res. 2012;61:1329–38.PubMedCrossRef Huang H, Fletcher A, Niu Y, Wang TY, Yu L. Characterization of lipopolysaccharide-stimulated cytokine expression in macrophages and monocytes. Inflamm Res. 2012;61:1329–38.PubMedCrossRef
46.
go back to reference ZhangW XuW, Xiong S. Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J Immunol. 2010;184:6465–78.CrossRef ZhangW XuW, Xiong S. Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J Immunol. 2010;184:6465–78.CrossRef
47.
go back to reference Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.PubMedCrossRef Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.PubMedCrossRef
48.
go back to reference Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175:342–9.PubMed Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175:342–9.PubMed
49.
go back to reference Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76:509–13.PubMedCrossRef Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76:509–13.PubMedCrossRef
50.
go back to reference Stout RD, Suttles J. Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev. 2005;205:60–71.PubMedCrossRef Stout RD, Suttles J. Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev. 2005;205:60–71.PubMedCrossRef
51.
go back to reference Stout RD. Macrophage functional phenotypes: no alternatives in dermal wound healing? J Leukoc Biol. 2010;87:19–21.PubMedCrossRef Stout RD. Macrophage functional phenotypes: no alternatives in dermal wound healing? J Leukoc Biol. 2010;87:19–21.PubMedCrossRef
52.
go back to reference Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.PubMed Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.PubMed
53.
go back to reference Meyer M, Huaux F, Gavilanes X, van den Brûle S, Lebecque P, Lore S, et al. Azithromycin reduces exaggerated cytokine production by M1 alveolar macrophages in cystic fibrosis. Am J Respir Cell Mol Biol. 2009;41:590–602.PubMedCrossRef Meyer M, Huaux F, Gavilanes X, van den Brûle S, Lebecque P, Lore S, et al. Azithromycin reduces exaggerated cytokine production by M1 alveolar macrophages in cystic fibrosis. Am J Respir Cell Mol Biol. 2009;41:590–602.PubMedCrossRef
54.
go back to reference Ortega MT, Xie L, Mora S, Chapes SK. Evaluation of macrophage plasticity in brown and white adipose tissue. Cell Immunol. 2011;271:124–33.PubMedCrossRef Ortega MT, Xie L, Mora S, Chapes SK. Evaluation of macrophage plasticity in brown and white adipose tissue. Cell Immunol. 2011;271:124–33.PubMedCrossRef
55.
go back to reference Empey KM, Orend JG, Peebles RS Jr, Egaña L, Norris KA, Oury TD, et al. Stimulation of immature lung macrophages with intranasal interferon gamma in a novel neonatal mouse model of respiratory syncytial virus infection. PLoS ONE. 2012;7:e40499.PubMedCrossRef Empey KM, Orend JG, Peebles RS Jr, Egaña L, Norris KA, Oury TD, et al. Stimulation of immature lung macrophages with intranasal interferon gamma in a novel neonatal mouse model of respiratory syncytial virus infection. PLoS ONE. 2012;7:e40499.PubMedCrossRef
56.
go back to reference Colhone MC, Arrais-Silva WW, Picolli C, Giorgio S. Effect of hypoxia on macrophage infection by Leishmania amazonensis. J Parasitol. 2004;90:510–5.PubMedCrossRef Colhone MC, Arrais-Silva WW, Picolli C, Giorgio S. Effect of hypoxia on macrophage infection by Leishmania amazonensis. J Parasitol. 2004;90:510–5.PubMedCrossRef
57.
go back to reference Degrosolli A, Colhone MC, Arrais-Silva WW, Giorgio S. Hypoxia modulates expression of the 70-kD heat shock protein and reduces Leishmania infection in macrophages. J Biomed Sci. 2004;11:847–54. Degrosolli A, Colhone MC, Arrais-Silva WW, Giorgio S. Hypoxia modulates expression of the 70-kD heat shock protein and reduces Leishmania infection in macrophages. J Biomed Sci. 2004;11:847–54.
58.
go back to reference Degrossoli A, Bosetto MC, Lima CB, Giorgio S. Expression of hypoxia-inducible factor 1α in mononuclear phagocytes infected with Leishmania amazonensis. Immunol Lett. 2007;114:119–25.PubMedCrossRef Degrossoli A, Bosetto MC, Lima CB, Giorgio S. Expression of hypoxia-inducible factor 1α in mononuclear phagocytes infected with Leishmania amazonensis. Immunol Lett. 2007;114:119–25.PubMedCrossRef
59.
go back to reference Degrossoli A, Arrais-Silva WW, Colhone MC, Gadelha FR, Joazeiro PJ, Giorgio S. The influence of low oxygen on macrophage response to Leishmania infection. Scand J Immunol. 2011;74:165–75.PubMedCrossRef Degrossoli A, Arrais-Silva WW, Colhone MC, Gadelha FR, Joazeiro PJ, Giorgio S. The influence of low oxygen on macrophage response to Leishmania infection. Scand J Immunol. 2011;74:165–75.PubMedCrossRef
60.
go back to reference Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–34.PubMedCrossRef Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–34.PubMedCrossRef
61.
go back to reference Rahat MA, Bitterman H, Lahat N. Molecular mechanisms regulating macrophage response to hypoxia. Front Immunol. 2011;2:45.PubMedCrossRef Rahat MA, Bitterman H, Lahat N. Molecular mechanisms regulating macrophage response to hypoxia. Front Immunol. 2011;2:45.PubMedCrossRef
62.
go back to reference Bosco MC, Puppo M, Blengio F, Fraone T, Cappello P, Giovarelli M, et al. Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration. Immunobiology. 2008;213:733–49.PubMedCrossRef Bosco MC, Puppo M, Blengio F, Fraone T, Cappello P, Giovarelli M, et al. Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration. Immunobiology. 2008;213:733–49.PubMedCrossRef
63.
go back to reference Murdoch C, Muthana M, Lewis CE. Hypoxia regulates macrophage functions in inflammation. J Immunol. 2005;175:6257–63.PubMed Murdoch C, Muthana M, Lewis CE. Hypoxia regulates macrophage functions in inflammation. J Immunol. 2005;175:6257–63.PubMed
64.
go back to reference Lahat N, Rahat MA, Ballan M, Weiss-Cerem L, Engelmayer M, Bitterman H. Hypoxia reduces CD80 expression on monocytes but enhances their LPS-stimulated TNF-alpha secretion. J Leukoc Biol. 2003;74:197–205.PubMedCrossRef Lahat N, Rahat MA, Ballan M, Weiss-Cerem L, Engelmayer M, Bitterman H. Hypoxia reduces CD80 expression on monocytes but enhances their LPS-stimulated TNF-alpha secretion. J Leukoc Biol. 2003;74:197–205.PubMedCrossRef
65.
go back to reference Spear W, Chan D, Coppens I, Johnson RS, Giaccia A, Blader IJ. The host cell transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels. Cell Microbiol. 2006;8:339–52.PubMedCrossRef Spear W, Chan D, Coppens I, Johnson RS, Giaccia A, Blader IJ. The host cell transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels. Cell Microbiol. 2006;8:339–52.PubMedCrossRef
66.
go back to reference Nickel D, Busch M, Mayer D, Hagemann B, Knoll V, Stenger S. Hypoxia triggers the expression of human β defensin 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages. J Immunol. 2012;188:4001–7.PubMedCrossRef Nickel D, Busch M, Mayer D, Hagemann B, Knoll V, Stenger S. Hypoxia triggers the expression of human β defensin 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages. J Immunol. 2012;188:4001–7.PubMedCrossRef
67.
go back to reference Puppo M, Bosco MC, Federico M, Pastorino S, Varesio L. Hypoxia inhibits Moloney murine leukemia virus expression in activated macrophages. J Leukoc Biol. 2007;81:528–38.PubMedCrossRef Puppo M, Bosco MC, Federico M, Pastorino S, Varesio L. Hypoxia inhibits Moloney murine leukemia virus expression in activated macrophages. J Leukoc Biol. 2007;81:528–38.PubMedCrossRef
68.
go back to reference Degrossoli A, Giorgio S. Functional alterations in macrophages after hypoxia selection. Exp Biol Med. 2007;232:88–95. Degrossoli A, Giorgio S. Functional alterations in macrophages after hypoxia selection. Exp Biol Med. 2007;232:88–95.
69.
go back to reference Leroux A, Ferrere G, Godie V, Cailleux F, Cailleux F, Renoud ML, Gaudin F, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57:141–9.PubMedCrossRef Leroux A, Ferrere G, Godie V, Cailleux F, Cailleux F, Renoud ML, Gaudin F, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57:141–9.PubMedCrossRef
70.
go back to reference Lorne E, Zmijewski JW, Zhao X, Liu G, Tsuruta Y, Park Y-J, Dupont H, Abraham E. Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. Am J Physiol Cell Physiol. 2008;294:C985–93.PubMedCrossRef Lorne E, Zmijewski JW, Zhao X, Liu G, Tsuruta Y, Park Y-J, Dupont H, Abraham E. Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. Am J Physiol Cell Physiol. 2008;294:C985–93.PubMedCrossRef
71.
go back to reference Nicholas SA, Coughlan K, Yasinska I, Lall GS, Gibbs BF, Calzolai L, Sumbayev VV. Dysfunctional mitochondria contain endogenous high-affinity human Toll-like receptor 4 (TLR4) ligands and induce TLR4-mediated inflammatory reactions. Int J Biochem Cell Biol. 2011;43:674–81.PubMedCrossRef Nicholas SA, Coughlan K, Yasinska I, Lall GS, Gibbs BF, Calzolai L, Sumbayev VV. Dysfunctional mitochondria contain endogenous high-affinity human Toll-like receptor 4 (TLR4) ligands and induce TLR4-mediated inflammatory reactions. Int J Biochem Cell Biol. 2011;43:674–81.PubMedCrossRef
72.
go back to reference Romagnoli M, Gomez-Cabrera MC, Perrelli MG, Biasi F, Pallardó FV, Sastre J, Poli G, Viña J. Xanthine oxidase-induced oxidative stress causes activation of NF-kappaB and inflammation in the liver of type I diabetic rats. Free Radic Biol Med. 2010;49:171–7.PubMedCrossRef Romagnoli M, Gomez-Cabrera MC, Perrelli MG, Biasi F, Pallardó FV, Sastre J, Poli G, Viña J. Xanthine oxidase-induced oxidative stress causes activation of NF-kappaB and inflammation in the liver of type I diabetic rats. Free Radic Biol Med. 2010;49:171–7.PubMedCrossRef
73.
go back to reference Lewis CL, Pollard JW. Distincts roles of macrophages in different tumor microenvironments. Cancer Res;2006 pp. 605–612. Lewis CL, Pollard JW. Distincts roles of macrophages in different tumor microenvironments. Cancer Res;2006 pp. 605–612.
74.
go back to reference Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M, Pierson KC, Pitts-Kiefer A, Fan L, et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol. 2011;131:1322–30.PubMedCrossRef Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M, Pierson KC, Pitts-Kiefer A, Fan L, et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol. 2011;131:1322–30.PubMedCrossRef
75.
go back to reference Stofanko M, Kwon SY, Badenhorst P. Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS ONE. 2010;5:e14051.PubMedCrossRef Stofanko M, Kwon SY, Badenhorst P. Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS ONE. 2010;5:e14051.PubMedCrossRef
76.
go back to reference DeWitt TJ, Scheiner SM. Phenotypic plasticity. Functional and conceptual approaches. New York: Oxford University Press; 2004. DeWitt TJ, Scheiner SM. Phenotypic plasticity. Functional and conceptual approaches. New York: Oxford University Press; 2004.
77.
go back to reference Pigliucci M. Phenotypic plasticity: beyond nature and nurture. Baltimore: University Press; 2001. Pigliucci M. Phenotypic plasticity: beyond nature and nurture. Baltimore: University Press; 2001.
78.
go back to reference Schlichting CD, Pigliucci M. Phenotypic evolution: a reaction norm perspective. Sunderland: Sinauer; 1998. Schlichting CD, Pigliucci M. Phenotypic evolution: a reaction norm perspective. Sunderland: Sinauer; 1998.
79.
go back to reference Chevin LM, Lande R, Mace GM. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLos Biol;2010 p. e1000357. Chevin LM, Lande R, Mace GM. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLos Biol;2010 p. e1000357.
80.
go back to reference Svennungsen TO, Holen ØH, Leimar O. Inducible defenses: continuous reaction norms or threshold traits? Am Nat. 2011;178:397–410.PubMedCrossRef Svennungsen TO, Holen ØH, Leimar O. Inducible defenses: continuous reaction norms or threshold traits? Am Nat. 2011;178:397–410.PubMedCrossRef
81.
go back to reference Fuller T. The integrative biology of phenotypic plasticity. Biol Philos. 2003;18:381–9.CrossRef Fuller T. The integrative biology of phenotypic plasticity. Biol Philos. 2003;18:381–9.CrossRef
82.
go back to reference Stearns SC. The evolutionary significance of phenotypic plasticity. Bioscience. 1989;39:436–45.CrossRef Stearns SC. The evolutionary significance of phenotypic plasticity. Bioscience. 1989;39:436–45.CrossRef
83.
85.
go back to reference Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87:59–67.PubMedCrossRef Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87:59–67.PubMedCrossRef
86.
go back to reference Xu W, Zhao X, Daha MR, et al. Reversible differentiation of pro- and anti-inflammatory macrophages. Mol Immunol. 2013;53:179–86.PubMedCrossRef Xu W, Zhao X, Daha MR, et al. Reversible differentiation of pro- and anti-inflammatory macrophages. Mol Immunol. 2013;53:179–86.PubMedCrossRef
87.
go back to reference Piersma T, van Gils JA. The flexible phenotype. A body-centred integration of ecology, physiology, and behavior. New York: Oxford University Press; 2011. Piersma T, van Gils JA. The flexible phenotype. A body-centred integration of ecology, physiology, and behavior. New York: Oxford University Press; 2011.
88.
go back to reference Whitman DW, Agrawal AA. What is phenotypic plasticity and why is it important? In: Whitman DW, Ananthakrishnan TN, editors. Phenotypic Plasticity of Insects: mechanisms and consequences. Enfield: Science Publishers; 2009. p. 1–63.CrossRef Whitman DW, Agrawal AA. What is phenotypic plasticity and why is it important? In: Whitman DW, Ananthakrishnan TN, editors. Phenotypic Plasticity of Insects: mechanisms and consequences. Enfield: Science Publishers; 2009. p. 1–63.CrossRef
89.
go back to reference Lof ME, Reed TE, McNamara JM, Visser ME. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. Proc Biol Sci. 2012;279:3161–9.PubMedCrossRef Lof ME, Reed TE, McNamara JM, Visser ME. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. Proc Biol Sci. 2012;279:3161–9.PubMedCrossRef
90.
go back to reference Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332:1284–8.PubMedCrossRef Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332:1284–8.PubMedCrossRef
Metadata
Title
Macrophages: plastic solutions to environmental heterogeneity
Author
Selma Giorgio
Publication date
01-09-2013
Publisher
Springer Basel
Published in
Inflammation Research / Issue 9/2013
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-013-0647-7

Other articles of this Issue 9/2013

Inflammation Research 9/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine