Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2024

Open Access 01-12-2024 | External Fixator | Research

In vivo axial load-share ratio measurement using a novel hexapod system for safe external fixator removal

Authors: Sida Liu, Lin Lu, Tao Chen, Yanshi Liu, Dong Wei, Jun Miao, Defu Yu, Xuefei Fu

Published in: BMC Musculoskeletal Disorders | Issue 1/2024

Login to get access

Abstract

Background

External fixation is widely used in the treatment of traumatic fractures; however, orthopedic surgeons encounter challenges in deciding the optimal time for fixator removal. The axial load-share ratio (LS) of the fixator is a quantitative index to evaluate the stiffness of callus healing. This paper introduces an innovative method for measuring the LS and assesses the method’s feasibility and efficacy. Based on a novel hexapod LS-measurement system, the proposed method is to improve the convenience and precision of measuring LS in vivo, hence facilitating the safe removal of external fixators.

Methods

A novel hexapod system is introduced, including its composition, theoretical model, and method for LS measurement. We conducted a retrospective study on 82 patients with tibial fractures treated by the Taylor Spatial Frame in our hospital from September 2018 to June 2020, of which 35 took LS measurements with our novel method (Group I), and 47 were with the traditional method (Group II). The external fixator was removed when the measurement outcome (LS < 10%) was consistent with the surgeon’s diagnosis based on the clinical and radiological assessment (bone union achieved).

Results

No significant difference was found in the fracture healing time (mean 25.3 weeks vs. 24.9 weeks, P > 0.05), frame-wearing duration (mean 25.5 weeks vs. 25.8 weeks, P > 0.05), or LS measurement frequency (mean 1.1 times vs. 1.2 times, P > 0.05). The measurement system installation time in Group I was significantly shorter compared to Group II (mean 14.8 min vs. 81.3 min, P < 0.001). The LS value of the first measurement in Group I was lower than that of Group II (mean 5.1% vs. 6.9%, P = 0.011). In Group I, the refracture rate was 0, but in Group II it was 4.3% (2/47, P > 0.05).

Conclusion

The novel hexapod LS-measurement system and involved method demonstrated enhanced convenience and precision in measuring the LS of the external fixator in vivo. The LS measurement indicates the callus stiffness of fracture healing, and is applicable to evaluate the safety of removing the fixator. Consequently, it is highly recommended for widespread adoption in clinical practice.
Literature
1.
go back to reference Jeremić D, Rajovic N, Gluscevic B, Krivokapic B, Rajkovic S, Bogosavljevic N, et al. Updated Meta-analysis of randomized controlled trials comparing external fixation to Intramedullary Nailing in the treatment of Open Tibial fractures. Med (B Aires). 2023;59:1301. Jeremić D, Rajovic N, Gluscevic B, Krivokapic B, Rajkovic S, Bogosavljevic N, et al. Updated Meta-analysis of randomized controlled trials comparing external fixation to Intramedullary Nailing in the treatment of Open Tibial fractures. Med (B Aires). 2023;59:1301.
2.
go back to reference Liu S, Yu D, Li H, Opoku M, Li J, Zhang B, et al. Combination of external fixation using digital six-axis fixator and internal fixation to treat severe complex knee deformity. J Orthop Surg Res. 2023;18:65.CrossRefPubMedPubMedCentral Liu S, Yu D, Li H, Opoku M, Li J, Zhang B, et al. Combination of external fixation using digital six-axis fixator and internal fixation to treat severe complex knee deformity. J Orthop Surg Res. 2023;18:65.CrossRefPubMedPubMedCentral
3.
go back to reference Aarnes GT, Steen H, Kristiansen LP, Festø E, Ludvigsen P. Optimum loading mode for axial stiffness testing in limb lengthening. J Orthop Res. 2006;24:348–54.CrossRefPubMed Aarnes GT, Steen H, Kristiansen LP, Festø E, Ludvigsen P. Optimum loading mode for axial stiffness testing in limb lengthening. J Orthop Res. 2006;24:348–54.CrossRefPubMed
4.
go back to reference Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep. 2017;6:87–100.CrossRefPubMedPubMedCentral Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep. 2017;6:87–100.CrossRefPubMedPubMedCentral
5.
go back to reference Fischgrund J, Paley D, Suter C. Variables affecting time to bone healing during limb lengthening. In: Clinical Orthopaedics and Related Research. 1994. Fischgrund J, Paley D, Suter C. Variables affecting time to bone healing during limb lengthening. In: Clinical Orthopaedics and Related Research. 1994.
6.
go back to reference Liu Y, Cai F, Liu K, Zhang X, Li H, Fu X, et al. Bony callus stiffness indirectly evaluated by the axial load-share ratio in vivo as a guide to removing a monolateral external fixator safely. Int Orthop. 2021;45:3015–23.CrossRefPubMed Liu Y, Cai F, Liu K, Zhang X, Li H, Fu X, et al. Bony callus stiffness indirectly evaluated by the axial load-share ratio in vivo as a guide to removing a monolateral external fixator safely. Int Orthop. 2021;45:3015–23.CrossRefPubMed
7.
go back to reference Simpson AHRW, Kenwright J. Fracture after distraction osteogenesis. J Bone Joint Surg. 2000;82:659–65.CrossRef Simpson AHRW, Kenwright J. Fracture after distraction osteogenesis. J Bone Joint Surg. 2000;82:659–65.CrossRef
8.
go back to reference Galal S. Dynamic locked plating for fixation of distal femur fractures using near- cortical over-drilling: preliminary results of a prospective observational study. J Clin Orthop Trauma. 2017;8:215–9.CrossRefPubMedPubMedCentral Galal S. Dynamic locked plating for fixation of distal femur fractures using near- cortical over-drilling: preliminary results of a prospective observational study. J Clin Orthop Trauma. 2017;8:215–9.CrossRefPubMedPubMedCentral
9.
go back to reference Wang R, Zhang H, Cui H, Fan Z, Xu K, Liu P, et al. Clinical effects and risk factors of far cortical locking system in the treatment of lower limb fractures. Injury. 2019;50:432–7.CrossRefPubMed Wang R, Zhang H, Cui H, Fan Z, Xu K, Liu P, et al. Clinical effects and risk factors of far cortical locking system in the treatment of lower limb fractures. Injury. 2019;50:432–7.CrossRefPubMed
10.
go back to reference Wang A, Wei T, Stockton DJ, Flury A, Kim TG, Roffey DM, Lefaivre KA. Radiographic Union Assessment in surgically treated distal femur fractures. JBJS Rev. 2024;12. Wang A, Wei T, Stockton DJ, Flury A, Kim TG, Roffey DM, Lefaivre KA. Radiographic Union Assessment in surgically treated distal femur fractures. JBJS Rev. 2024;12.
11.
go back to reference Moorcroft CI, Ogrodnik PJ, Thomas PBM, Wade RH. Mechanical properties of callus in human tibial fractures: a preliminary investigation. Clin Biomech Elsevier Ltd. 2001;16:776–82.CrossRef Moorcroft CI, Ogrodnik PJ, Thomas PBM, Wade RH. Mechanical properties of callus in human tibial fractures: a preliminary investigation. Clin Biomech Elsevier Ltd. 2001;16:776–82.CrossRef
12.
go back to reference Ogrodnik PJ, Moorcroft CI, Thomas PB. Measuring multi-dimensional, time-dependent mechanical properties of a human tibial fracture using an automated system. Proc Inst Mech Eng H. 2007;221:641–52.CrossRefPubMed Ogrodnik PJ, Moorcroft CI, Thomas PB. Measuring multi-dimensional, time-dependent mechanical properties of a human tibial fracture using an automated system. Proc Inst Mech Eng H. 2007;221:641–52.CrossRefPubMed
13.
go back to reference Robertson DD, Beck TJ, Chan BW, Scott WW, Sharma GB, Maloney WJ. Torsional strength estimates of femoral diaphyses with endosteal lytic lesions: dual-energy x‐ray absorptiometry study. J Orthop Res. 2007;25:1343–50.CrossRefPubMed Robertson DD, Beck TJ, Chan BW, Scott WW, Sharma GB, Maloney WJ. Torsional strength estimates of femoral diaphyses with endosteal lytic lesions: dual-energy x‐ray absorptiometry study. J Orthop Res. 2007;25:1343–50.CrossRefPubMed
14.
go back to reference Windhagen H, Kolbeck S, Bail H, Schmeling A, Raschke M. Quantitative assessment of in vivo bone regeneration consolidation in distraction osteogenesis. J Orthop Res. 2000;18:912–9.CrossRefPubMed Windhagen H, Kolbeck S, Bail H, Schmeling A, Raschke M. Quantitative assessment of in vivo bone regeneration consolidation in distraction osteogenesis. J Orthop Res. 2000;18:912–9.CrossRefPubMed
15.
go back to reference Mora-Macías J, Reina-Romo E, López-Pliego M, Giráldez-Sánchez MA, Domínguez J. In vivo mechanical characterization of the distraction callus during bone consolidation. Ann Biomed Eng. 2015;43:2663–74.CrossRefPubMed Mora-Macías J, Reina-Romo E, López-Pliego M, Giráldez-Sánchez MA, Domínguez J. In vivo mechanical characterization of the distraction callus during bone consolidation. Ann Biomed Eng. 2015;43:2663–74.CrossRefPubMed
16.
go back to reference Parks C, McAndrew CM, Spraggs-Hughes A, Ricci WM, Silva MJ, Gardner MJ. In-vivo stiffness assessment of distal femur fracture locked plating constructs. Clin Biomech Elsevier Ltd. 2018;56:46–51.CrossRef Parks C, McAndrew CM, Spraggs-Hughes A, Ricci WM, Silva MJ, Gardner MJ. In-vivo stiffness assessment of distal femur fracture locked plating constructs. Clin Biomech Elsevier Ltd. 2018;56:46–51.CrossRef
17.
go back to reference Schmickal T, von Recum J, Wentzensen A. Stiffness measurement of the neocallus with the Fraktometer FM 100®. Arch Orthop Trauma Surg. 2005;125:653–9.CrossRefPubMed Schmickal T, von Recum J, Wentzensen A. Stiffness measurement of the neocallus with the Fraktometer FM 100®. Arch Orthop Trauma Surg. 2005;125:653–9.CrossRefPubMed
18.
go back to reference Aarnes GT, Steen H, Ludvigsen P, Waanders NA, Huiskes R, Goldstein SA. In vivo assessment of regenerate axial stiffness in distraction osteogenesis. J Orthop Res. 2005;23:494–8.CrossRefPubMed Aarnes GT, Steen H, Ludvigsen P, Waanders NA, Huiskes R, Goldstein SA. In vivo assessment of regenerate axial stiffness in distraction osteogenesis. J Orthop Res. 2005;23:494–8.CrossRefPubMed
19.
go back to reference Vijayakumar V, Marks L, Bremmer-Smith A, Hardy J, Gardner T. Load transmission through a healing tibial fracture. Clin Biomech Elsevier Ltd. 2006;21:49–53.CrossRef Vijayakumar V, Marks L, Bremmer-Smith A, Hardy J, Gardner T. Load transmission through a healing tibial fracture. Clin Biomech Elsevier Ltd. 2006;21:49–53.CrossRef
20.
go back to reference Horn J, Steen H, Huhnstock S, Hvid I, Gunderson RB. Limb lengthening and deformity correction of congenital and acquired deformities in children using the Taylor spatial frame. Acta Orthop. 2017;88:334–40.CrossRefPubMedPubMedCentral Horn J, Steen H, Huhnstock S, Hvid I, Gunderson RB. Limb lengthening and deformity correction of congenital and acquired deformities in children using the Taylor spatial frame. Acta Orthop. 2017;88:334–40.CrossRefPubMedPubMedCentral
21.
go back to reference Khunda A, Al-Maiyah M, Eardley WGP, Montgomery R. The management of tibial fracture non-union using the Taylor spatial frame. J Orthop. 2016;13:360–3.CrossRefPubMedPubMedCentral Khunda A, Al-Maiyah M, Eardley WGP, Montgomery R. The management of tibial fracture non-union using the Taylor spatial frame. J Orthop. 2016;13:360–3.CrossRefPubMedPubMedCentral
22.
go back to reference Stewart D. A platform with six degrees of freedom. Proc Institution Mech Eng. 1965;180:371–86.CrossRef Stewart D. A platform with six degrees of freedom. Proc Institution Mech Eng. 1965;180:371–86.CrossRef
23.
go back to reference Lynch KM, Park F. Modern Robotics -Mechanics, Planning, and Control. 2017. Lynch KM, Park F. Modern Robotics -Mechanics, Planning, and Control. 2017.
24.
go back to reference Mutlu H, Akçali İD, Gülşen M. A Mathematical Model for the Use of a Gough-Stewart platform mechanism as a Fixator. J Eng Math. 2006;54:119–43.CrossRef Mutlu H, Akçali İD, Gülşen M. A Mathematical Model for the Use of a Gough-Stewart platform mechanism as a Fixator. J Eng Math. 2006;54:119–43.CrossRef
25.
go back to reference Craig JJ. Introduction to Robotics: Mechanics and Control, 3rd Edition. 2004. Craig JJ. Introduction to Robotics: Mechanics and Control, 3rd Edition. 2004.
26.
go back to reference Moses MJ, Tejwani NC. The role of external fixation in the management of Upper Extremity fractures. J Am Acad Orthop Surg. 2023;31:860–70.CrossRefPubMed Moses MJ, Tejwani NC. The role of external fixation in the management of Upper Extremity fractures. J Am Acad Orthop Surg. 2023;31:860–70.CrossRefPubMed
27.
go back to reference Watts A, Sadekar V, Moulder E, Souroullas P, Hadland Y, Barron E, et al. A comparative evaluation of the time to frame removal for tibia fractures treated with hexapod and Ilizarov circular frames. Injury. 2023;54:996–1003.CrossRefPubMed Watts A, Sadekar V, Moulder E, Souroullas P, Hadland Y, Barron E, et al. A comparative evaluation of the time to frame removal for tibia fractures treated with hexapod and Ilizarov circular frames. Injury. 2023;54:996–1003.CrossRefPubMed
28.
go back to reference Sumner DR, Galante JO. Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res. 1992;:202–12. Sumner DR, Galante JO. Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res. 1992;:202–12.
29.
go back to reference Krettek C, Haas N, Tscherne H. The role of supplemental lag-screw fixation for open fractures of the tibial shaft treated with external fixation. J Bone Joint Surg - Ser A. 1991;73. Krettek C, Haas N, Tscherne H. The role of supplemental lag-screw fixation for open fractures of the tibial shaft treated with external fixation. J Bone Joint Surg - Ser A. 1991;73.
30.
go back to reference Fisher JS, Kazam JJ, Fufa D, Bartolotta RJ. Radiologic evaluation of fracture healing. Skeletal Radiol. 2019;48:349–61.CrossRefPubMed Fisher JS, Kazam JJ, Fufa D, Bartolotta RJ. Radiologic evaluation of fracture healing. Skeletal Radiol. 2019;48:349–61.CrossRefPubMed
31.
go back to reference Corrales LA, Morshed S, Bhandari M, Miclau T. Variability in the Assessment of Fracture-Healing in Orthopaedic Trauma studies. J Bone Joint Surgery-American Volume. 2008;90:1862–8.CrossRef Corrales LA, Morshed S, Bhandari M, Miclau T. Variability in the Assessment of Fracture-Healing in Orthopaedic Trauma studies. J Bone Joint Surgery-American Volume. 2008;90:1862–8.CrossRef
32.
go back to reference Anand A, Feldman DS, Patel RJ, Lehman WB, van Bosse HJP, Badra MI, et al. Interobserver and intraobserver reliability of radiographic evidence of bone healing at osteotomy sites. J Pediatr Orthop B. 2006;15:271–2.CrossRefPubMed Anand A, Feldman DS, Patel RJ, Lehman WB, van Bosse HJP, Badra MI, et al. Interobserver and intraobserver reliability of radiographic evidence of bone healing at osteotomy sites. J Pediatr Orthop B. 2006;15:271–2.CrossRefPubMed
33.
go back to reference Bliven EK, Greinwald M, Hackl S, Augat P. External fixation of the lower extremities: biomechanical perspective and recent innovations. Injury. 2019;50:S10–7.CrossRefPubMed Bliven EK, Greinwald M, Hackl S, Augat P. External fixation of the lower extremities: biomechanical perspective and recent innovations. Injury. 2019;50:S10–7.CrossRefPubMed
34.
go back to reference Ernst M, Baumgartner H, Döbele S, Höntzsch D, Pohlemann T, Windolf M. Clinical feasibility of fracture healing assessment through continuous monitoring of implant load. J Biomech. 2021;116:110188.CrossRefPubMed Ernst M, Baumgartner H, Döbele S, Höntzsch D, Pohlemann T, Windolf M. Clinical feasibility of fracture healing assessment through continuous monitoring of implant load. J Biomech. 2021;116:110188.CrossRefPubMed
35.
go back to reference Archdeacon MT, Arebi S, Le TT, Wirth R, Kebel R, Thakore M. Orthogonal pin construct versus parallel uniplanar pin constructs for pelvic external fixation: a biomechanical assessment of stiffness and strength. J Orthop Trauma. 2009;23:100–5.CrossRefPubMed Archdeacon MT, Arebi S, Le TT, Wirth R, Kebel R, Thakore M. Orthogonal pin construct versus parallel uniplanar pin constructs for pelvic external fixation: a biomechanical assessment of stiffness and strength. J Orthop Trauma. 2009;23:100–5.CrossRefPubMed
36.
go back to reference Cai C, Shi B, Ji G, Feng Y, Shu H. Biomechanical study on the fixation effect of circular external fixators for oblique fractures of long bones. Chin J Orthop. 2021;41:1640–6. Cai C, Shi B, Ji G, Feng Y, Shu H. Biomechanical study on the fixation effect of circular external fixators for oblique fractures of long bones. Chin J Orthop. 2021;41:1640–6.
Metadata
Title
In vivo axial load-share ratio measurement using a novel hexapod system for safe external fixator removal
Authors
Sida Liu
Lin Lu
Tao Chen
Yanshi Liu
Dong Wei
Jun Miao
Defu Yu
Xuefei Fu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2024
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-024-07440-y

Other articles of this Issue 1/2024

BMC Musculoskeletal Disorders 1/2024 Go to the issue