Skip to main content
Top
Published in: Malaria Journal 1/2024

Open Access 01-12-2024 | Malaria | Research

Genetic polymorphism and evidence of signatures of selection in the Plasmodium falciparum circumsporozoite protein gene in Tanzanian regions with different malaria endemicity

Authors: Beatus M. Lyimo, Catherine Bakari, Zachary R. Popkin-Hall, David J. Giesbrecht, Misago D. Seth, Dativa Pereus, Zulfa I. Shabani, Ramadhan Moshi, Ruth Boniface, Celine I. Mandara, Rashid Madebe, Jonathan J. Juliano, Jeffrey A. Bailey, Deus S. Ishengoma

Published in: Malaria Journal | Issue 1/2024

Login to get access

Abstract

Background

In 2021 and 2023, the World Health Organization approved RTS,S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (PfCSP), but polymorphisms in the gene raise concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission intensities in Mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country.

Methods

The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of Mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright’s inbreeding coefficient (Fws), Wright’s fixation index (FST), principal component analysis, nucleotide diversity, and Tajima’s D were used to assess within-host parasite diversity, population structure and natural selection.

Results

Based on Fws (< 0.95), there was high polyclonality (ranging from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST = 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima’s D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences revealed 50 different haplotypes (H_1 to H_50), with only 2% of sequences matching the 3D7 strain haplotype (H_50). Conversely, with the NF54 strain, the Pfcsp C-terminal sequences revealed 49 different haplotypes (H_1 to H_49), with only 0.4% of the sequences matching the NF54 strain (Hap_49).

Conclusions

The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima’s D values, consistent with balancing selection for variants within Th2R and Th3R regions. The study observed differences between the intended haplotypes incorporated into the design of RTS,S and R21 vaccines and those present in natural parasite populations. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.
Literature
1.
go back to reference WHO. World malaria report 2021. Geneva: World Health Organization; 2021. WHO. World malaria report 2021. Geneva: World Health Organization; 2021.
3.
go back to reference Mitchell CL, Ngasala B, Janko MM, Chacky F, Edwards JK, Pence BW, et al. Evaluating malaria prevalence and land cover across varying transmission intensity in Tanzania using a cross-sectional survey of school-aged children. Malar J. 2022;21:80.PubMedPubMedCentralCrossRef Mitchell CL, Ngasala B, Janko MM, Chacky F, Edwards JK, Pence BW, et al. Evaluating malaria prevalence and land cover across varying transmission intensity in Tanzania using a cross-sectional survey of school-aged children. Malar J. 2022;21:80.PubMedPubMedCentralCrossRef
4.
go back to reference WHO. Global technical strategy for malaria. Geneva: World Health Organization; 2021. WHO. Global technical strategy for malaria. Geneva: World Health Organization; 2021.
5.
go back to reference Feachem RGA, Chen I, Akbari O, Bertozzi-Villa A, Bhatt S, Binka F, et al. Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet. 2019;394:1056–112.PubMedCrossRef Feachem RGA, Chen I, Akbari O, Bertozzi-Villa A, Bhatt S, Binka F, et al. Malaria eradication within a generation: ambitious, achievable, and necessary. Lancet. 2019;394:1056–112.PubMedCrossRef
7.
go back to reference Guyant P, Corbel V, Guérin PJ, Lautissier A, Nosten F, Boyer S, et al. Past and new challenges for malaria control and elimination: the role of operational research for innovation in designing interventions. Malar J. 2015;14:279.PubMedPubMedCentralCrossRef Guyant P, Corbel V, Guérin PJ, Lautissier A, Nosten F, Boyer S, et al. Past and new challenges for malaria control and elimination: the role of operational research for innovation in designing interventions. Malar J. 2015;14:279.PubMedPubMedCentralCrossRef
8.
go back to reference Huang H-Y, Liang X-Y, Lin L-Y, Chen J-T, Ehapo CS, Eyi UM, et al. Genetic polymorphism of Plasmodium falciparum circumsporozoite protein on Bioko Island, Equatorial Guinea and global comparative analysis. Malar J. 2020;19:245.PubMedPubMedCentralCrossRef Huang H-Y, Liang X-Y, Lin L-Y, Chen J-T, Ehapo CS, Eyi UM, et al. Genetic polymorphism of Plasmodium falciparum circumsporozoite protein on Bioko Island, Equatorial Guinea and global comparative analysis. Malar J. 2020;19:245.PubMedPubMedCentralCrossRef
9.
10.
11.
go back to reference Nadeem AY, Shehzad A, Islam SU, Al-Suhaimi EA, Lee YS. Mosquirix™ RTS, S/AS01 vaccine development, immunogenicity, and efficacy. Vaccines (Basel). 2022;10:713.PubMedCrossRef Nadeem AY, Shehzad A, Islam SU, Al-Suhaimi EA, Lee YS. Mosquirix™ RTS, S/AS01 vaccine development, immunogenicity, and efficacy. Vaccines (Basel). 2022;10:713.PubMedCrossRef
13.
go back to reference Le Roch KG, Chung DWD, Ponts N. Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication. Parasite Immunol. 2012;34:50–60.PubMedPubMedCentralCrossRef Le Roch KG, Chung DWD, Ponts N. Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication. Parasite Immunol. 2012;34:50–60.PubMedPubMedCentralCrossRef
14.
go back to reference Mohamed NS, AbdElbagi H, Elsadig AR, Ahmed AE, Mohammed YO, Elssir LT, et al. Assessment of genetic diversity of Plasmodium falciparum circumsporozoite protein in Sudan: the RTS, S leading malaria vaccine candidate. Malar J. 2021;20:436.PubMedPubMedCentralCrossRef Mohamed NS, AbdElbagi H, Elsadig AR, Ahmed AE, Mohammed YO, Elssir LT, et al. Assessment of genetic diversity of Plasmodium falciparum circumsporozoite protein in Sudan: the RTS, S leading malaria vaccine candidate. Malar J. 2021;20:436.PubMedPubMedCentralCrossRef
15.
go back to reference Kurtovic L, Drew DR, Dent AE, Kazura JW, Beeson JG. Antibody targets and properties for complement-fixation against the circumsporozoite protein in malaria immunity. Front Immunol. 2021;12: 775659.PubMedPubMedCentralCrossRef Kurtovic L, Drew DR, Dent AE, Kazura JW, Beeson JG. Antibody targets and properties for complement-fixation against the circumsporozoite protein in malaria immunity. Front Immunol. 2021;12: 775659.PubMedPubMedCentralCrossRef
16.
go back to reference WHO. Guidelines for malaria. Geneva: World Health Organization; 2022. WHO. Guidelines for malaria. Geneva: World Health Organization; 2022.
17.
go back to reference Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria RTS, S. Malaria Vaccine Evaluation Group. N Engl J Med. 1997;336:86–91.PubMedCrossRef Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria RTS, S. Malaria Vaccine Evaluation Group. N Engl J Med. 1997;336:86–91.PubMedCrossRef
18.
go back to reference Regules JA, Cummings JF, Ockenhouse CF. The RTS, S vaccine candidate for malaria. Expert Rev Vaccines. 2011;10:589–99.PubMedCrossRef Regules JA, Cummings JF, Ockenhouse CF. The RTS, S vaccine candidate for malaria. Expert Rev Vaccines. 2011;10:589–99.PubMedCrossRef
19.
go back to reference Asante KP, Abdulla S, Agnandji S, Lyimo J, Vekemans J, Soulanoudjingar S, et al. Safety and efficacy of the RTS, S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial. Lancet Infect Dis. 2011;11:741–9.PubMedCrossRef Asante KP, Abdulla S, Agnandji S, Lyimo J, Vekemans J, Soulanoudjingar S, et al. Safety and efficacy of the RTS, S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial. Lancet Infect Dis. 2011;11:741–9.PubMedCrossRef
20.
go back to reference Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kester KE, et al. Efficacy of RTS, S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet. 2001;358:1927–34.PubMedCrossRef Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kester KE, et al. Efficacy of RTS, S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet. 2001;358:1927–34.PubMedCrossRef
21.
go back to reference Aponte JJ, Aide P, Renom M, Mandomando I, Bassat Q, Sacarlal J, et al. Safety of the RTS, S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled phase I/IIb trial. Lancet. 2007;370:1543–51.PubMedCrossRef Aponte JJ, Aide P, Renom M, Mandomando I, Bassat Q, Sacarlal J, et al. Safety of the RTS, S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled phase I/IIb trial. Lancet. 2007;370:1543–51.PubMedCrossRef
22.
go back to reference RTS,S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.CrossRef RTS,S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.CrossRef
23.
go back to reference Asante KP, Adjei G, Enuameh Y, Owusu-Agyei S. RTS, S malaria vaccine development: progress and considerations for postapproval introduction. Vaccine Dev Ther. 2016;6:25–52.CrossRef Asante KP, Adjei G, Enuameh Y, Owusu-Agyei S. RTS, S malaria vaccine development: progress and considerations for postapproval introduction. Vaccine Dev Ther. 2016;6:25–52.CrossRef
24.
go back to reference Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep. 2017;7:46621.PubMedPubMedCentralCrossRef Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep. 2017;7:46621.PubMedPubMedCentralCrossRef
25.
go back to reference Ballou WR, Rothbard J, Wirtz RA, Gordon DM, Williams JS, Gore RW, et al. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science. 1985;228:996–9.PubMedCrossRef Ballou WR, Rothbard J, Wirtz RA, Gordon DM, Williams JS, Gore RW, et al. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science. 1985;228:996–9.PubMedCrossRef
26.
go back to reference Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet. 2021;397:1809–18.PubMedPubMedCentralCrossRef Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet. 2021;397:1809–18.PubMedPubMedCentralCrossRef
28.
go back to reference Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, et al. Genetic diversity and protective efficacy of the RTS, S/AS01 malaria vaccine. N Engl J Med. 2015;373(21):2025–37.PubMedPubMedCentralCrossRef Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, et al. Genetic diversity and protective efficacy of the RTS, S/AS01 malaria vaccine. N Engl J Med. 2015;373(21):2025–37.PubMedPubMedCentralCrossRef
29.
go back to reference Chaudhury S, MacGill RS, Early AM, Bolton JS, King CR, Locke E, et al. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine. Vaccine. 2021;39:968–75.PubMedCrossRef Chaudhury S, MacGill RS, Early AM, Bolton JS, King CR, Locke E, et al. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine. Vaccine. 2021;39:968–75.PubMedCrossRef
30.
go back to reference Pinzon-Ortiz C, Friedman J, Esko J, Sinnis P. The binding of the circumsporozoite protein to cell surface heparan sulfate proteoglycans is required for plasmodium sporozoite attachment to target cells. J Biol Chem. 2001;276:26784–91.PubMedCrossRef Pinzon-Ortiz C, Friedman J, Esko J, Sinnis P. The binding of the circumsporozoite protein to cell surface heparan sulfate proteoglycans is required for plasmodium sporozoite attachment to target cells. J Biol Chem. 2001;276:26784–91.PubMedCrossRef
31.
go back to reference Rathore D, Sacci JB, de la Vega P, McCutchan TF. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J Biol Chem. 2002;277:7092–8.PubMedCrossRef Rathore D, Sacci JB, de la Vega P, McCutchan TF. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J Biol Chem. 2002;277:7092–8.PubMedCrossRef
32.
go back to reference Gandhi K, Thera MA, Coulibaly D, Traoré K, Guindo AB, Ouattara A, et al. Variation in the circumsporozoite protein of Plasmodium falciparum: vaccine development implications. PLoS ONE. 2014;9: e101783.PubMedPubMedCentralCrossRef Gandhi K, Thera MA, Coulibaly D, Traoré K, Guindo AB, Ouattara A, et al. Variation in the circumsporozoite protein of Plasmodium falciparum: vaccine development implications. PLoS ONE. 2014;9: e101783.PubMedPubMedCentralCrossRef
33.
go back to reference Gandhi K, Thera MA, Coulibaly D, Traoré K, Guindo AB, Doumbo OK, et al. Next generation sequencing to detect variation in the Plasmodium falciparum circumsporozoite protein. Am J Trop Med Hyg. 2012;86:775–81.PubMedPubMedCentralCrossRef Gandhi K, Thera MA, Coulibaly D, Traoré K, Guindo AB, Doumbo OK, et al. Next generation sequencing to detect variation in the Plasmodium falciparum circumsporozoite protein. Am J Trop Med Hyg. 2012;86:775–81.PubMedPubMedCentralCrossRef
34.
go back to reference Egan JE, Hoffman SL, Haynes JD, Sadoff JC, Schneider I, et al. Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 1993;49:166–73.PubMedCrossRef Egan JE, Hoffman SL, Haynes JD, Sadoff JC, Schneider I, et al. Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 1993;49:166–73.PubMedCrossRef
35.
go back to reference Plassmeyer ML, Reiter K, Shimp RL, Kotova S, Smith PD, Hurt DE, et al. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem. 2009;284:26951–63.PubMedPubMedCentralCrossRef Plassmeyer ML, Reiter K, Shimp RL, Kotova S, Smith PD, Hurt DE, et al. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem. 2009;284:26951–63.PubMedPubMedCentralCrossRef
36.
go back to reference Barry AE, Schultz L, Buckee CO, Reeder JC. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite Plasmodium falciparum. PLoS ONE. 2009;4: e8497.PubMedPubMedCentralCrossRef Barry AE, Schultz L, Buckee CO, Reeder JC. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite Plasmodium falciparum. PLoS ONE. 2009;4: e8497.PubMedPubMedCentralCrossRef
37.
go back to reference Zeeshan M, Alam MT, Vinayak S, Bora H, Tyagi RK, Alam MS, et al. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS ONE. 2012;7: e43430.PubMedPubMedCentralCrossRef Zeeshan M, Alam MT, Vinayak S, Bora H, Tyagi RK, Alam MS, et al. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS ONE. 2012;7: e43430.PubMedPubMedCentralCrossRef
38.
go back to reference Lê HG, Kang J-M, Moe M, Jun H, Thái TL, Lee J, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar. Malar J. 2018;17:361.PubMedPubMedCentralCrossRef Lê HG, Kang J-M, Moe M, Jun H, Thái TL, Lee J, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar. Malar J. 2018;17:361.PubMedPubMedCentralCrossRef
39.
go back to reference Ishengoma D, Shayo A, Mandara C, Baraka V, Madebe R, Ngatunga, et al. The role of malaria rapid diagnostic tests in screening of patients to be enrolled in clinical trials in low malaria transmission settings. Health Syst Policy Res. 2016;3:2. Ishengoma D, Shayo A, Mandara C, Baraka V, Madebe R, Ngatunga, et al. The role of malaria rapid diagnostic tests in screening of patients to be enrolled in clinical trials in low malaria transmission settings. Health Syst Policy Res. 2016;3:2.
40.
go back to reference Ahouidi A, Ali M, Almagro-garcia J, Amambua-ngwa A, Amaratunga C, MalariaGEN, et al. An open dataset of Plasmodium falciparum genome variation in 7000 worldwide samples. Wellcome Open Res. 2021;6:42.PubMedPubMedCentralCrossRef Ahouidi A, Ali M, Almagro-garcia J, Amambua-ngwa A, Amaratunga C, MalariaGEN, et al. An open dataset of Plasmodium falciparum genome variation in 7000 worldwide samples. Wellcome Open Res. 2021;6:42.PubMedPubMedCentralCrossRef
41.
go back to reference Ghansah A, Amenga-Etego L, Amambua-Ngwa A, Andagalu B, Apinjoh T, Bouyou-Akotet M, et al. Monitoring parasite diversity for malaria elimination in sub-Saharan Africa. Science. 2014;345:1297–8.PubMedPubMedCentralCrossRef Ghansah A, Amenga-Etego L, Amambua-Ngwa A, Andagalu B, Apinjoh T, Bouyou-Akotet M, et al. Monitoring parasite diversity for malaria elimination in sub-Saharan Africa. Science. 2014;345:1297–8.PubMedPubMedCentralCrossRef
42.
go back to reference Shayo A, Mandara CI, Shahada F, Buza J, Lemnge MM, Ishengoma DS. Therapeutic efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in North-Eastern Tanzania. Malar J. 2014;13:376.PubMedPubMedCentralCrossRef Shayo A, Mandara CI, Shahada F, Buza J, Lemnge MM, Ishengoma DS. Therapeutic efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in North-Eastern Tanzania. Malar J. 2014;13:376.PubMedPubMedCentralCrossRef
43.
go back to reference Mandara CI, Kavishe RA, Gesase S, Mghamba J, Ngadaya E, Mmbuji P, et al. High efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Muheza and Kigoma Districts, Tanzania. Malar J. 2018;17:261.PubMedPubMedCentralCrossRef Mandara CI, Kavishe RA, Gesase S, Mghamba J, Ngadaya E, Mmbuji P, et al. High efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Muheza and Kigoma Districts, Tanzania. Malar J. 2018;17:261.PubMedPubMedCentralCrossRef
44.
go back to reference Venkatesan M, Amaratunga C, Campino S, Auburn S, Koch O, Lim P, et al. Using CF11 cellulose columns to inexpensively and effectively remove human DNA from Plasmodium falciparum-infected whole blood samples. Malar J. 2012;11:41.PubMedPubMedCentralCrossRef Venkatesan M, Amaratunga C, Campino S, Auburn S, Koch O, Lim P, et al. Using CF11 cellulose columns to inexpensively and effectively remove human DNA from Plasmodium falciparum-infected whole blood samples. Malar J. 2012;11:41.PubMedPubMedCentralCrossRef
46.
go back to reference Jung Y, Han D. BWA-MEME: BWA-MEM emulated with a machine learning approach. BioRxiv. 2021. Jung Y, Han D. BWA-MEME: BWA-MEM emulated with a machine learning approach. BioRxiv. 2021.
47.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedPubMedCentralCrossRef Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedPubMedCentralCrossRef
48.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentralCrossRef McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentralCrossRef
49.
go back to reference Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487:375–9.PubMedPubMedCentralCrossRef Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487:375–9.PubMedPubMedCentralCrossRef
50.
go back to reference Lee S, Harrison A, Tessier N, Tavul L, Miotto O. Assessing clonality in malaria parasites from massively parallel sequencing data. F1000Research. 2015;4:1043. Lee S, Harrison A, Tessier N, Tavul L, Miotto O. Assessing clonality in malaria parasites from massively parallel sequencing data. F1000Research. 2015;4:1043.
51.
go back to reference Chakraborty R, Danker-Hopfe H. Analysis of population structure: a comparative study of different estimators of wright’s fixation indices. In: Rao CR, Chakraborty R, editors. Handbook of statistics, vol. 8. Elsevier; 1991. p. 203–54. Chakraborty R, Danker-Hopfe H. Analysis of population structure: a comparative study of different estimators of wright’s fixation indices. In: Rao CR, Chakraborty R, editors. Handbook of statistics, vol. 8. Elsevier; 1991. p. 203–54.
52.
go back to reference Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. Dnasp 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.PubMedCrossRef Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. Dnasp 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.PubMedCrossRef
53.
go back to reference Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48.PubMedCrossRef Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48.PubMedCrossRef
54.
58.
go back to reference Thawer SG, Chacky F, Runge M, Reaves E, Mandike R, Lazaro S, et al. Sub-national stratification of malaria risk in mainland Tanzania: a simplified assembly of survey and routine data. Malar J. 2020;19:177.PubMedPubMedCentralCrossRef Thawer SG, Chacky F, Runge M, Reaves E, Mandike R, Lazaro S, et al. Sub-national stratification of malaria risk in mainland Tanzania: a simplified assembly of survey and routine data. Malar J. 2020;19:177.PubMedPubMedCentralCrossRef
59.
go back to reference Ministry of Health, Community Development, Gender, Elderly and Children. National Malaria Strategic Plan 2021–2025, Transitioning to malaria elimination in phases. National Malaria Control Programme, Tanzania, 2021. Ministry of Health, Community Development, Gender, Elderly and Children. National Malaria Strategic Plan 2021–2025, Transitioning to malaria elimination in phases. National Malaria Control Programme, Tanzania, 2021.
60.
go back to reference World Health Organization. WHO recommends R21/Matrix-M vaccine for malaria prevention in updated advice on immunization. Geneva: World Health Organization; 2023. World Health Organization. WHO recommends R21/Matrix-M vaccine for malaria prevention in updated advice on immunization. Geneva: World Health Organization; 2023.
61.
go back to reference Aragam NR, Thayer KM, Nge N, Hoffman I, Martinson F, Kamwendo D, et al. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions. PLoS ONE. 2013;8: e62427.PubMedPubMedCentralCrossRef Aragam NR, Thayer KM, Nge N, Hoffman I, Martinson F, Kamwendo D, et al. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions. PLoS ONE. 2013;8: e62427.PubMedPubMedCentralCrossRef
62.
go back to reference Pringle JC, Wesolowski A, Berube S, Kobayashi T, Gebhardt ME, Mulenga M, et al. High Plasmodium falciparum genetic diversity and temporal stability despite control efforts in high transmission settings along the international border between Zambia and the Democratic Republic of the Congo. Malar J. 2019;18:400.PubMedPubMedCentralCrossRef Pringle JC, Wesolowski A, Berube S, Kobayashi T, Gebhardt ME, Mulenga M, et al. High Plasmodium falciparum genetic diversity and temporal stability despite control efforts in high transmission settings along the international border between Zambia and the Democratic Republic of the Congo. Malar J. 2019;18:400.PubMedPubMedCentralCrossRef
63.
go back to reference Amegashie EA, Amenga-Etego L, Adobor C, Ogoti P, Mbogo K, Amambua-Ngwa A, et al. Population genetic analysis of the Plasmodium falciparum circumsporozoite protein in two distinct ecological regions in Ghana. Malar J. 2020;19:437.PubMedPubMedCentralCrossRef Amegashie EA, Amenga-Etego L, Adobor C, Ogoti P, Mbogo K, Amambua-Ngwa A, et al. Population genetic analysis of the Plasmodium falciparum circumsporozoite protein in two distinct ecological regions in Ghana. Malar J. 2020;19:437.PubMedPubMedCentralCrossRef
64.
go back to reference He Z-Q, Zhang Q-Q, Wang D, Hu Y-B, Zhou R-M, Qian D, et al. Genetic polymorphism of circumsporozoite protein of Plasmodium falciparum among Chinese migrant workers returning from Africa to Henan Province. Malar J. 2022;21:248.PubMedPubMedCentralCrossRef He Z-Q, Zhang Q-Q, Wang D, Hu Y-B, Zhou R-M, Qian D, et al. Genetic polymorphism of circumsporozoite protein of Plasmodium falciparum among Chinese migrant workers returning from Africa to Henan Province. Malar J. 2022;21:248.PubMedPubMedCentralCrossRef
65.
go back to reference Duffy CW, Ba H, Assefa S, Ahouidi AD, Deh YB, Tandia A, et al. Population genetic structure and adaptation of malaria parasites on the edge of endemic distribution. Mol Ecol. 2017;26:2880–94.PubMedPubMedCentralCrossRef Duffy CW, Ba H, Assefa S, Ahouidi AD, Deh YB, Tandia A, et al. Population genetic structure and adaptation of malaria parasites on the edge of endemic distribution. Mol Ecol. 2017;26:2880–94.PubMedPubMedCentralCrossRef
66.
go back to reference Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, et al. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet. 2012;8: e1002992.PubMedPubMedCentralCrossRef Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, et al. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet. 2012;8: e1002992.PubMedPubMedCentralCrossRef
67.
go back to reference Pringle JC, Carpi G, Almagro-Garcia J, Zhu SJ, Kobayashi T, Mulenga M, et al. RTS, S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally. Sci Rep. 2018;8:6622.PubMedPubMedCentralCrossRef Pringle JC, Carpi G, Almagro-Garcia J, Zhu SJ, Kobayashi T, Mulenga M, et al. RTS, S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally. Sci Rep. 2018;8:6622.PubMedPubMedCentralCrossRef
68.
go back to reference Bailey JA, Mvalo T, Aragam N, Weiser M, Congdon S, Kamwendo D, et al. Use of massively parallel pyrosequencing to evaluate the diversity of and selection on Plasmodium falciparum csp T-cell epitopes in Lilongwe. Malawi J Infect Dis. 2012;206:580–7.PubMedCrossRef Bailey JA, Mvalo T, Aragam N, Weiser M, Congdon S, Kamwendo D, et al. Use of massively parallel pyrosequencing to evaluate the diversity of and selection on Plasmodium falciparum csp T-cell epitopes in Lilongwe. Malawi J Infect Dis. 2012;206:580–7.PubMedCrossRef
69.
go back to reference Polley SD, Conway DJ. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics. 2001;158:1505–12.PubMedPubMedCentralCrossRef Polley SD, Conway DJ. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics. 2001;158:1505–12.PubMedPubMedCentralCrossRef
70.
go back to reference Nirmolia T, Ahmed MA, Sathishkumar V, Sarma NP, Bhattacharyya DR, Mohapatra PK, et al. Genetic diversity of Plasmodium falciparum AMA-1 antigen from the Northeast Indian state of Tripura and comparison with global sequences: implications for vaccine development. Malar J. 2022;21:62.PubMedPubMedCentralCrossRef Nirmolia T, Ahmed MA, Sathishkumar V, Sarma NP, Bhattacharyya DR, Mohapatra PK, et al. Genetic diversity of Plasmodium falciparum AMA-1 antigen from the Northeast Indian state of Tripura and comparison with global sequences: implications for vaccine development. Malar J. 2022;21:62.PubMedPubMedCentralCrossRef
71.
go back to reference Ajibola O, Diop MF, Ghansah A, Amenga-Etego L, Golassa L, Apinjoh T, et al. In silico characterisation of putative Plasmodium falciparum vaccine candidates in African malaria populations. Sci Rep. 2021;11:16215.PubMedPubMedCentralCrossRef Ajibola O, Diop MF, Ghansah A, Amenga-Etego L, Golassa L, Apinjoh T, et al. In silico characterisation of putative Plasmodium falciparum vaccine candidates in African malaria populations. Sci Rep. 2021;11:16215.PubMedPubMedCentralCrossRef
72.
go back to reference Chenet SM, Branch OH, Escalante AA, Lucas CM, Bacon DJ. Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru. Malar J. 2008;7:93.PubMedPubMedCentralCrossRef Chenet SM, Branch OH, Escalante AA, Lucas CM, Bacon DJ. Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru. Malar J. 2008;7:93.PubMedPubMedCentralCrossRef
73.
go back to reference Reeder JC, Wapling J, Mueller I, Siba PM, Barry AE. Population genetic analysis of the Plasmodium falciparum 6-cys protein Pf38 in Papua New Guinea reveals domain-specific balancing selection. Malar J. 2011;10:126.PubMedPubMedCentralCrossRef Reeder JC, Wapling J, Mueller I, Siba PM, Barry AE. Population genetic analysis of the Plasmodium falciparum 6-cys protein Pf38 in Papua New Guinea reveals domain-specific balancing selection. Malar J. 2011;10:126.PubMedPubMedCentralCrossRef
Metadata
Title
Genetic polymorphism and evidence of signatures of selection in the Plasmodium falciparum circumsporozoite protein gene in Tanzanian regions with different malaria endemicity
Authors
Beatus M. Lyimo
Catherine Bakari
Zachary R. Popkin-Hall
David J. Giesbrecht
Misago D. Seth
Dativa Pereus
Zulfa I. Shabani
Ramadhan Moshi
Ruth Boniface
Celine I. Mandara
Rashid Madebe
Jonathan J. Juliano
Jeffrey A. Bailey
Deus S. Ishengoma
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2024
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-024-04974-3

Other articles of this Issue 1/2024

Malaria Journal 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine