Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2024

Open Access 01-12-2024 | Frontotemporal Dementia | Research

Combined in vivo MRI assessment of locus coeruleus and nucleus basalis of Meynert integrity in amnestic Alzheimer’s disease, suspected-LATE and frontotemporal dementia

Authors: Julien Lagarde, Pauline Olivieri, Matteo Tonietto, Camille Noiray, Stéphane Lehericy, Romain Valabrègue, Fabien Caillé, Philippe Gervais, Martin Moussion, Michel Bottlaender, Marie Sarazin

Published in: Alzheimer's Research & Therapy | Issue 1/2024

Login to get access

Abstract

Background

The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer’s disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls.

Methods

Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy.

Results

We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients.

Conclusions

The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.
Literature
1.
go back to reference Ehrenberg AJ, Kelberman MA, Liu KY, et al. Priorities for research on neuromodulatory subcortical systems in Alzheimer’s disease: position paper from the NSS PIA of ISTAART. Alzheimers Dement. 2023;19(5):2182–96.PubMedCrossRef Ehrenberg AJ, Kelberman MA, Liu KY, et al. Priorities for research on neuromodulatory subcortical systems in Alzheimer’s disease: position paper from the NSS PIA of ISTAART. Alzheimers Dement. 2023;19(5):2182–96.PubMedCrossRef
2.
go back to reference Matchett BJ, Grinberg LT, Theofilas P, et al. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2021;141(5):631–50.PubMedPubMedCentralCrossRef Matchett BJ, Grinberg LT, Theofilas P, et al. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2021;141(5):631–50.PubMedPubMedCentralCrossRef
3.
go back to reference Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23.PubMedCrossRef Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23.PubMedCrossRef
4.
go back to reference Šimić G, Babić Leko M, Wray S, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38.PubMedCrossRef Šimić G, Babić Leko M, Wray S, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38.PubMedCrossRef
5.
go back to reference Baxter MG, Chiba AA. Cognitive functions of the basal forebrain. Curr Opin Neurobiol. 1999;9:178–83.PubMedCrossRef Baxter MG, Chiba AA. Cognitive functions of the basal forebrain. Curr Opin Neurobiol. 1999;9:178–83.PubMedCrossRef
6.
go back to reference Sarter M, Bruno JP, Givens B. Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem. 2003;80:245–56.PubMedCrossRef Sarter M, Bruno JP, Givens B. Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem. 2003;80:245–56.PubMedCrossRef
7.
go back to reference Grudzien A, Shaw P, Weintraub S, et al. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging. 2007;28:327–35.PubMedCrossRef Grudzien A, Shaw P, Weintraub S, et al. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging. 2007;28:327–35.PubMedCrossRef
8.
9.
go back to reference Kelly SC, He B, Perez SE, et al. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun. 2017;5:8.PubMedPubMedCentralCrossRef Kelly SC, He B, Perez SE, et al. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun. 2017;5:8.PubMedPubMedCentralCrossRef
10.
go back to reference Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2:1403.PubMedCrossRef Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2:1403.PubMedCrossRef
11.
go back to reference Whitehouse PJ, Price DL, Clark AW, et al. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol. 1981;10:122–6.PubMedCrossRef Whitehouse PJ, Price DL, Clark AW, et al. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol. 1981;10:122–6.PubMedCrossRef
12.
go back to reference Hall AM, Moore RY, Lopez OL, et al. Basal forebrain atrophy is a presymptomatic marker for Alzheimer’s disease. Alzheimers Dement. 2008;4:271–9.PubMedCrossRef Hall AM, Moore RY, Lopez OL, et al. Basal forebrain atrophy is a presymptomatic marker for Alzheimer’s disease. Alzheimers Dement. 2008;4:271–9.PubMedCrossRef
13.
go back to reference Grothe M, Zaborszky L, Atienza M, et al. Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease. Cereb Cortex. 2010;20:1685–95.PubMedCrossRef Grothe M, Zaborszky L, Atienza M, et al. Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease. Cereb Cortex. 2010;20:1685–95.PubMedCrossRef
14.
go back to reference Mesulam M, Shaw P, Mash D, et al. Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol. 2004;55:815–28.PubMedCrossRef Mesulam M, Shaw P, Mash D, et al. Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol. 2004;55:815–28.PubMedCrossRef
15.
go back to reference Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain. 2015;138(Pt 10):2814–33.PubMedCrossRef Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain. 2015;138(Pt 10):2814–33.PubMedCrossRef
16.
go back to reference Braak H, Thal DR, Ghebremedhin E, et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.PubMedCrossRef Braak H, Thal DR, Ghebremedhin E, et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.PubMedCrossRef
17.
go back to reference Braak H, Del Tredici K. Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol. 2011;121:589–95.PubMedCrossRef Braak H, Del Tredici K. Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol. 2011;121:589–95.PubMedCrossRef
18.
go back to reference Braak H, Del Tredici K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol. 2012;25:708–14.PubMedCrossRef Braak H, Del Tredici K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol. 2012;25:708–14.PubMedCrossRef
20.
go back to reference Betts MJ, Kirilina E, Otaduy MCG, et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain. 2019;142(9):2558–71.PubMedPubMedCentralCrossRef Betts MJ, Kirilina E, Otaduy MCG, et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain. 2019;142(9):2558–71.PubMedPubMedCentralCrossRef
21.
go back to reference Teipel SJ, Flatz WH, Heinsen H, et al. Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain. 2005;128:2626–44.PubMedCrossRef Teipel SJ, Flatz WH, Heinsen H, et al. Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain. 2005;128:2626–44.PubMedCrossRef
22.
go back to reference Zaborszky L, Hoemke L, Mohlberg H, et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. NeuroImage. 2008;42:1127–41.PubMedCrossRef Zaborszky L, Hoemke L, Mohlberg H, et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. NeuroImage. 2008;42:1127–41.PubMedCrossRef
23.
go back to reference Grothe MJ, Schuster C, Bauer F, et al. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol. 2014;261:1939–48.PubMedCrossRef Grothe MJ, Schuster C, Bauer F, et al. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol. 2014;261:1939–48.PubMedCrossRef
24.
go back to reference Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry. 2012;71:805–13.PubMedCrossRef Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry. 2012;71:805–13.PubMedCrossRef
25.
go back to reference Teipel SJ, Meindl T, Grinberg L, et al. The cholinergic system in mild cognitive impairment and Alzheimer’s disease: an in vivo MRI and DTI study. Hum Brain Mapp. 2011;32:1349–62.PubMedCrossRef Teipel SJ, Meindl T, Grinberg L, et al. The cholinergic system in mild cognitive impairment and Alzheimer’s disease: an in vivo MRI and DTI study. Hum Brain Mapp. 2011;32:1349–62.PubMedCrossRef
26.
go back to reference Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503–27.PubMedPubMedCentralCrossRef Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain. 2019;142:1503–27.PubMedPubMedCentralCrossRef
27.
go back to reference Nelson PT, Lee EB, Cykowski MD, et al. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol. 2023;145(2):159–73.PubMedCrossRef Nelson PT, Lee EB, Cykowski MD, et al. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol. 2023;145(2):159–73.PubMedCrossRef
28.
go back to reference Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol. 2023;19(9):525–41.PubMedPubMedCentralCrossRef Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol. 2023;19(9):525–41.PubMedPubMedCentralCrossRef
29.
go back to reference Teipel SJ, Grothe MJ, Alzheimer’s Disease Neuroimaging Initiative. Antemortem basal forebrain atrophy in pure limbic TAR DNA-binding protein 43 pathology compared with pure Alzheimer pathology. Eur J Neurol. 2022;29:1394–401.PubMedCrossRef Teipel SJ, Grothe MJ, Alzheimer’s Disease Neuroimaging Initiative. Antemortem basal forebrain atrophy in pure limbic TAR DNA-binding protein 43 pathology compared with pure Alzheimer pathology. Eur J Neurol. 2022;29:1394–401.PubMedCrossRef
30.
go back to reference Teipel S, Grothe MJ, Alzheimer’s Disease Neuroimaging Initiative. MRI-based basal forebrain atrophy and volumetric signatures associated with limbic TDP-43 compared to Alzheimer’s disease pathology. Neurobiol Dis. 2023;180:106070.PubMedCrossRef Teipel S, Grothe MJ, Alzheimer’s Disease Neuroimaging Initiative. MRI-based basal forebrain atrophy and volumetric signatures associated with limbic TDP-43 compared to Alzheimer’s disease pathology. Neurobiol Dis. 2023;180:106070.PubMedCrossRef
31.
go back to reference Ohm DT, Peterson C, Lobrovich R, et al. Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathol. 2020;140:675–93.PubMedPubMedCentralCrossRef Ohm DT, Peterson C, Lobrovich R, et al. Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathol. 2020;140:675–93.PubMedPubMedCentralCrossRef
32.
go back to reference Matti N, Javanshiri K, Haglund M, Saenz-Sardá X, Englund E. Locus Coeruleus Degeneration differs between Frontotemporal Lobar Degeneration subtypes. J Alzheimers Dis. 2022;89(2):463–71.PubMedPubMedCentralCrossRef Matti N, Javanshiri K, Haglund M, Saenz-Sardá X, Englund E. Locus Coeruleus Degeneration differs between Frontotemporal Lobar Degeneration subtypes. J Alzheimers Dis. 2022;89(2):463–71.PubMedPubMedCentralCrossRef
34.
go back to reference Lagarde J, Olivieri P, Tonietto M, et al. Distinct amyloid and tau PET signatures are associated with diverging clinical and imaging trajectories in patients with amnestic syndrome of the hippocampal type. Transl Psychiatry. 2021;11(1):498.PubMedPubMedCentralCrossRef Lagarde J, Olivieri P, Tonietto M, et al. Distinct amyloid and tau PET signatures are associated with diverging clinical and imaging trajectories in patients with amnestic syndrome of the hippocampal type. Transl Psychiatry. 2021;11(1):498.PubMedPubMedCentralCrossRef
35.
go back to reference Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.PubMedPubMedCentralCrossRef Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Lagarde J, Olivieri P, Tonietto M, et al. Tau-PET imaging predicts cognitive decline and brain atrophy progression in early Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2022;93(5):459–67.PubMedCrossRef Lagarde J, Olivieri P, Tonietto M, et al. Tau-PET imaging predicts cognitive decline and brain atrophy progression in early Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2022;93(5):459–67.PubMedCrossRef
38.
go back to reference García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain. 2013;136:2120–9.PubMedPubMedCentralCrossRef García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain. 2013;136:2120–9.PubMedPubMedCentralCrossRef
39.
go back to reference Shibata E, Sasaki M, Tohyama K, et al. Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn Reson Med Sci. 2006;5:197–200.PubMedCrossRef Shibata E, Sasaki M, Tohyama K, et al. Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn Reson Med Sci. 2006;5:197–200.PubMedCrossRef
40.
go back to reference Olivieri P, Lagarde J, Lehericy S, et al. Early alteration of the locus coeruleus in phenotypic variants of Alzheimer’s disease. Ann Clin Transl Neurol. 2019;6:1345–51.PubMedPubMedCentralCrossRef Olivieri P, Lagarde J, Lehericy S, et al. Early alteration of the locus coeruleus in phenotypic variants of Alzheimer’s disease. Ann Clin Transl Neurol. 2019;6:1345–51.PubMedPubMedCentralCrossRef
43.
go back to reference Eickhoff SB, Stephan KE, Mohlberg H, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage. 2005;25:1325–35.PubMedCrossRef Eickhoff SB, Stephan KE, Mohlberg H, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage. 2005;25:1325–35.PubMedCrossRef
44.
go back to reference Jack CR Jr, Wiste HJ, Weigand SD, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13(3):205–16.PubMedCrossRef Jack CR Jr, Wiste HJ, Weigand SD, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13(3):205–16.PubMedCrossRef
45.
go back to reference Ossenkoppele R, Lyoo CH, Sudre CH, et al. Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease. Alzheimers Dement. 2020;16(2):335–44.PubMedCrossRef Ossenkoppele R, Lyoo CH, Sudre CH, et al. Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease. Alzheimers Dement. 2020;16(2):335–44.PubMedCrossRef
46.
go back to reference Geula C, Dunlop SR, Ayala I, et al. Basal forebrain cholinergic system in the dementias: vulnerability, resilience, and resistance. J Neurochem. 2021;158(6):1394–411.PubMedPubMedCentralCrossRef Geula C, Dunlop SR, Ayala I, et al. Basal forebrain cholinergic system in the dementias: vulnerability, resilience, and resistance. J Neurochem. 2021;158(6):1394–411.PubMedPubMedCentralCrossRef
47.
go back to reference Kilimann I, Grothe M, Heinsen H, et al. Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J Alzheimers Dis. 2014;40:687–700.PubMedPubMedCentralCrossRef Kilimann I, Grothe M, Heinsen H, et al. Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J Alzheimers Dis. 2014;40:687–700.PubMedPubMedCentralCrossRef
48.
go back to reference Galgani A, Giorgi FS. Exploring the role of Locus Coeruleus in Alzheimer’s Disease: a Comprehensive Update on MRI studies and implications. Curr Neurol Neurosci Rep. 2023;23(12):925–36.PubMedPubMedCentralCrossRef Galgani A, Giorgi FS. Exploring the role of Locus Coeruleus in Alzheimer’s Disease: a Comprehensive Update on MRI studies and implications. Curr Neurol Neurosci Rep. 2023;23(12):925–36.PubMedPubMedCentralCrossRef
49.
go back to reference Jacobs HIL, Becker JA, Kwong K, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci Transl Med. 2021;13(612):eabj2511.PubMedPubMedCentralCrossRef Jacobs HIL, Becker JA, Kwong K, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci Transl Med. 2021;13(612):eabj2511.PubMedPubMedCentralCrossRef
50.
go back to reference Fernández-Cabello S, Kronbichler M, Van Dijk KRA, et al. Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain. 2020;143(3):993–1009.PubMedPubMedCentralCrossRef Fernández-Cabello S, Kronbichler M, Van Dijk KRA, et al. Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain. 2020;143(3):993–1009.PubMedPubMedCentralCrossRef
51.
go back to reference Galgani A, Lombardo F, Martini N, et al. Magnetic resonance imaging Locus Coeruleus abnormality in amnestic mild cognitive impairment is associated with future progression to dementia. Eur J Neurol. 2023;30(1):32–46.PubMedCrossRef Galgani A, Lombardo F, Martini N, et al. Magnetic resonance imaging Locus Coeruleus abnormality in amnestic mild cognitive impairment is associated with future progression to dementia. Eur J Neurol. 2023;30(1):32–46.PubMedCrossRef
52.
go back to reference Cykowski MD, Takei H, Van Eldik LJ, et al. Hippocampal sclerosis but not normal aging or Alzheimer Disease is Associated with TDP-43 Pathology in the basal forebrain of aged persons. J Neuropathol Exp Neurol. 2016;75:397–407.PubMedPubMedCentralCrossRef Cykowski MD, Takei H, Van Eldik LJ, et al. Hippocampal sclerosis but not normal aging or Alzheimer Disease is Associated with TDP-43 Pathology in the basal forebrain of aged persons. J Neuropathol Exp Neurol. 2016;75:397–407.PubMedPubMedCentralCrossRef
53.
go back to reference Quattrini G, Pini L, Boscolo Galazzo I, et al. Microstructural alterations in the locus coeruleus-entorhinal cortex pathway in Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement (Amst). 2024;16(1):e12513.PubMedCrossRef Quattrini G, Pini L, Boscolo Galazzo I, et al. Microstructural alterations in the locus coeruleus-entorhinal cortex pathway in Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement (Amst). 2024;16(1):e12513.PubMedCrossRef
54.
go back to reference Grothe MJ, Heinsen H, Amaro E Jr, et al. Cognitive correlates of basal forebrain atrophy and Associated cortical hypometabolism in mild cognitive impairment. Cereb Cortex. 2016;26(6):2411–26.PubMedCrossRef Grothe MJ, Heinsen H, Amaro E Jr, et al. Cognitive correlates of basal forebrain atrophy and Associated cortical hypometabolism in mild cognitive impairment. Cereb Cortex. 2016;26(6):2411–26.PubMedCrossRef
55.
go back to reference Cantero JL, Zaborszky L, Atienza M. Volume loss of the Nucleus Basalis of Meynert is Associated with atrophy of innervated regions in mild cognitive impairment. Cereb Cortex. 2017;27(8):3881–9.PubMed Cantero JL, Zaborszky L, Atienza M. Volume loss of the Nucleus Basalis of Meynert is Associated with atrophy of innervated regions in mild cognitive impairment. Cereb Cortex. 2017;27(8):3881–9.PubMed
56.
go back to reference Liu AK, Chang RC, Pearce RK, et al. Nucleus basalis of meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 2015;129(4):527–40.PubMedPubMedCentralCrossRef Liu AK, Chang RC, Pearce RK, et al. Nucleus basalis of meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 2015;129(4):527–40.PubMedPubMedCentralCrossRef
57.
go back to reference Li S. The β-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer’s disease. J Neurochem. 2023;165(3):289–302.PubMedCrossRef Li S. The β-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer’s disease. J Neurochem. 2023;165(3):289–302.PubMedCrossRef
58.
go back to reference Malatt C, Tagliati M. The role of the locus coeruleus/norepinephrine system in the pathogenesis of neurodegenerative disorders: an update. Curr Opin Neurol. 2022;35(2):220–9.PubMedCrossRef Malatt C, Tagliati M. The role of the locus coeruleus/norepinephrine system in the pathogenesis of neurodegenerative disorders: an update. Curr Opin Neurol. 2022;35(2):220–9.PubMedCrossRef
59.
go back to reference Gamage R, Wagnon I, Rossetti I, et al. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front Cell Neurosci. 2020;14:577912.PubMedPubMedCentralCrossRef Gamage R, Wagnon I, Rossetti I, et al. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front Cell Neurosci. 2020;14:577912.PubMedPubMedCentralCrossRef
60.
go back to reference Sibahi A, Gandhi R, Al-Haddad R, et al. Characterization of an automated method to segment the human locus coeruleus. Hum Brain Mapp. 2023;44(9):3913–25.PubMedPubMedCentralCrossRef Sibahi A, Gandhi R, Al-Haddad R, et al. Characterization of an automated method to segment the human locus coeruleus. Hum Brain Mapp. 2023;44(9):3913–25.PubMedPubMedCentralCrossRef
61.
go back to reference Mercan D, Heneka MT. The contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the progression of Alzheimer’s Disease. Biology (Basel). 2022;11(12):1822.PubMed Mercan D, Heneka MT. The contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the progression of Alzheimer’s Disease. Biology (Basel). 2022;11(12):1822.PubMed
62.
go back to reference Slater C, Liu Y, Weiss E, et al. The Neuromodulatory Role of the noradrenergic and Cholinergic Systems and their interplay in cognitive functions: a focused review. Brain Sci. 2022;12(7):890.PubMedPubMedCentralCrossRef Slater C, Liu Y, Weiss E, et al. The Neuromodulatory Role of the noradrenergic and Cholinergic Systems and their interplay in cognitive functions: a focused review. Brain Sci. 2022;12(7):890.PubMedPubMedCentralCrossRef
Metadata
Title
Combined in vivo MRI assessment of locus coeruleus and nucleus basalis of Meynert integrity in amnestic Alzheimer’s disease, suspected-LATE and frontotemporal dementia
Authors
Julien Lagarde
Pauline Olivieri
Matteo Tonietto
Camille Noiray
Stéphane Lehericy
Romain Valabrègue
Fabien Caillé
Philippe Gervais
Martin Moussion
Michel Bottlaender
Marie Sarazin
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2024
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-024-01466-z

Other articles of this Issue 1/2024

Alzheimer's Research & Therapy 1/2024 Go to the issue