Skip to main content
Top
Published in: BMC Infectious Diseases 1/2024

Open Access 01-12-2024 | Pseudomonas Aeruginosa | Research

Rapid, sensitive, and user-friendly detection of Pseudomonas aeruginosa using the RPA/CRISPR/Cas12a system

Authors: Wenjing Zhang, Hai Qu, Xin Wu, Jingjing Shi, Xinling Wang

Published in: BMC Infectious Diseases | Issue 1/2024

Login to get access

Abstract

Background

Pseudomonas aeruginosa (P. aeruginosa) is a life-threatening bacterium known for its rapid development of antibiotic resistance, posing significant challenges in clinical treatment, biosecurity, food safety, and environmental monitoring. Early and accurate identification of P. aeruginosa is crucial for effective intervention.

Methods

The lasB gene of P. aeruginosa was selected as the target for the detection. RPA primers for recombinase polymerase amplification (RPA) and crRNA for CRISPR/Cas12a detection were meticulously designed to target specific regions within the lasB gene. The specificity of the RPA/CRISPR/Cas12a detection platform was assessed using 15 strains. The detection limit of RPA/CRISPR/Cas12a detection platform was determined by utilizing a pseudo-dilution series of the P. aeruginosa DNA. The practical applicability of the RPA/CRISPR/Cas12a detection platform was validated by comparing it with qPCR on 150 samples (35 processed meat product samples, 55 cold seasoned vegetable dishes, 60 bottled water samples).

Results

The RPA/CRISPR/Cas12a detection platform demonstrates high specificity, with no cross-reactivity with non-P. aeruginosa strains. This assay exhibits remarkable sensitivity, with a limit of detection (LOD) of 100 copies/µL for fluorescence assay and 101 copies/µL for the LFTS method. Furthermore, the performance of the RPA/CRISPR/Cas12a detection platform is comparable to that of the well-established qPCR method, while offering advantages such as shorter reaction time, simplified operation, and reduced equipment requirements.

Conclusions

The RPA/CRISPR/Cas12a detection platform presents a straightforward, accurate, and sensitive approach for early P. aeruginosa detection and holds great promise for diverse applications requiring rapid and reliable identification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Crone S, Vives-Flórez M, Kvich L, Saunders AM, Malone M, Nicolaisen MH, Martínez-García E, Rojas-Acosta C, Gomez-Puerto MC, Calum H, Whiteley M, Kolter R, Bjarnsholt T. The environmental occurrence of Pseudomonas aeruginosa. APMIS. 2020;128(3):220–31.CrossRefPubMed Crone S, Vives-Flórez M, Kvich L, Saunders AM, Malone M, Nicolaisen MH, Martínez-García E, Rojas-Acosta C, Gomez-Puerto MC, Calum H, Whiteley M, Kolter R, Bjarnsholt T. The environmental occurrence of Pseudomonas aeruginosa. APMIS. 2020;128(3):220–31.CrossRefPubMed
2.
go back to reference Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):e00031–19.CrossRefPubMedPubMedCentral Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):e00031–19.CrossRefPubMedPubMedCentral
3.
go back to reference Qin SG, Xiao W, Zhou CM, Pu QQ, Deng X, Lan LF, Liang HH, Song XR, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199.CrossRefPubMedPubMedCentral Qin SG, Xiao W, Zhou CM, Pu QQ, Deng X, Lan LF, Liang HH, Song XR, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199.CrossRefPubMedPubMedCentral
4.
go back to reference Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an adaptable Arsenal of virulence factors. Int J Mol Sci. 2021;22(6):3128.CrossRefPubMedPubMedCentral Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an adaptable Arsenal of virulence factors. Int J Mol Sci. 2021;22(6):3128.CrossRefPubMedPubMedCentral
5.
go back to reference Marei EM. Isolation and characterization of Pseudomonas aeruginosa and its virulent bacteriophages. Pak J Biol Sci. 2020;23(4):491–500.CrossRefPubMed Marei EM. Isolation and characterization of Pseudomonas aeruginosa and its virulent bacteriophages. Pak J Biol Sci. 2020;23(4):491–500.CrossRefPubMed
6.
go back to reference Zhang BS, Li LJ, Zhu Q, Wang Z, Yuan P, Zhou GD, Shi WJ, Chu XF, Jiang SJ, Xie ZJ. Co-infection of H9N2 influenza virus and Pseudomonas aeruginosa contributes to the development of hemorrhagic pneumonia in mink. Vet Microbiol. 2020;240:108542.CrossRef Zhang BS, Li LJ, Zhu Q, Wang Z, Yuan P, Zhou GD, Shi WJ, Chu XF, Jiang SJ, Xie ZJ. Co-infection of H9N2 influenza virus and Pseudomonas aeruginosa contributes to the development of hemorrhagic pneumonia in mink. Vet Microbiol. 2020;240:108542.CrossRef
7.
go back to reference Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019;24(1):350–9.CrossRefPubMed Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019;24(1):350–9.CrossRefPubMed
9.
go back to reference Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev. 2017;46(16):4818–32.CrossRefPubMed Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev. 2017;46(16):4818–32.CrossRefPubMed
10.
11.
go back to reference Duan L, Yang XH, Zhan WL, Tang Y, Wei MG, Chen KY, Liu P, Xie J, Zhang CB, Zhao HY, Luo MY. Development of a rapid and accurate CRISPR/Cas13 - based diagnostic test for GII.4 norovirus infection. Front Microbiol. 2022;13:912315.CrossRefPubMedPubMedCentral Duan L, Yang XH, Zhan WL, Tang Y, Wei MG, Chen KY, Liu P, Xie J, Zhang CB, Zhao HY, Luo MY. Development of a rapid and accurate CRISPR/Cas13 - based diagnostic test for GII.4 norovirus infection. Front Microbiol. 2022;13:912315.CrossRefPubMedPubMedCentral
12.
go back to reference Zhu CS, Liu CY, Qiu XY, Xie SS, Li WY, Zhu L, Zhu LY. Novel nucleic acid detection strategies based on CRISPR-Cas systems: from construction to application. Biotechnol Bioeng. 2020;17(7):2279–94.CrossRef Zhu CS, Liu CY, Qiu XY, Xie SS, Li WY, Zhu L, Zhu LY. Novel nucleic acid detection strategies based on CRISPR-Cas systems: from construction to application. Biotechnol Bioeng. 2020;17(7):2279–94.CrossRef
13.
go back to reference Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung JL, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–42.CrossRefPubMedPubMedCentral Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung JL, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–42.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Mukama O, Wu JH, Li ZY, Liang QX, Yi ZJ, Lu XW, Liu YJ, Liu YM, Hussain M, Makafe GG, Liu JX, Xu N, Zeng LW. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosens Bioelectron. 2020;159:112143.CrossRefPubMed Mukama O, Wu JH, Li ZY, Liang QX, Yi ZJ, Lu XW, Liu YJ, Liu YM, Hussain M, Makafe GG, Liu JX, Xu N, Zeng LW. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosens Bioelectron. 2020;159:112143.CrossRefPubMed
16.
go back to reference Chen Y, Mei YX, Zhao XH, et al. Reagents-loaded, automated assay that integrates recombinase-aided amplification and Cas12a nucleic acid detection for a point-of-care test. Anal Chem. 2020;92(21):14846–52.CrossRefPubMed Chen Y, Mei YX, Zhao XH, et al. Reagents-loaded, automated assay that integrates recombinase-aided amplification and Cas12a nucleic acid detection for a point-of-care test. Anal Chem. 2020;92(21):14846–52.CrossRefPubMed
17.
go back to reference Liu S, Huang SY, Li F, et al. Rapid detection of Pseudomonas aeruginosa by recombinase polymerase amplification combined with CRISPR-Cas12a biosensing system. Front Cell Infect Microbiol. 2023;13:1239269.CrossRefPubMedPubMedCentral Liu S, Huang SY, Li F, et al. Rapid detection of Pseudomonas aeruginosa by recombinase polymerase amplification combined with CRISPR-Cas12a biosensing system. Front Cell Infect Microbiol. 2023;13:1239269.CrossRefPubMedPubMedCentral
18.
go back to reference Huang SY, Wang XF, Chen XC, et al. Rapid and sensitive detection of Pseudomonas aeruginosa by isothermal amplification combined with Cas12a-mediated detection. Sci Rep. 2023;13(1):19199.CrossRefPubMedPubMedCentral Huang SY, Wang XF, Chen XC, et al. Rapid and sensitive detection of Pseudomonas aeruginosa by isothermal amplification combined with Cas12a-mediated detection. Sci Rep. 2023;13(1):19199.CrossRefPubMedPubMedCentral
19.
go back to reference Hu JC, Liang L, He MF, et al. Sensitive and direct analysis of pseudomonas aeruginosa through self-primer-assisted chain extension and CRISPR-Cas12a-based color reaction. ACS Omega. 2023;8(38):34852–8.CrossRefPubMedPubMedCentral Hu JC, Liang L, He MF, et al. Sensitive and direct analysis of pseudomonas aeruginosa through self-primer-assisted chain extension and CRISPR-Cas12a-based color reaction. ACS Omega. 2023;8(38):34852–8.CrossRefPubMedPubMedCentral
20.
go back to reference Yang HT, Liu AB, Ma FF, et al. Establishment of portable Pseudomonas aeruginosa detection platform based on one-tube CRISPR/Cas12a combined with recombinase polymerase amplification technology. Clin Chim Acta. 2024;554:117760.CrossRefPubMed Yang HT, Liu AB, Ma FF, et al. Establishment of portable Pseudomonas aeruginosa detection platform based on one-tube CRISPR/Cas12a combined with recombinase polymerase amplification technology. Clin Chim Acta. 2024;554:117760.CrossRefPubMed
21.
go back to reference Everett MJ, Davies DT. Pseudomonas aeruginosa elastase (lasB) as a therapeutic target. Drug Discov Today. 2021;26(9):2108–23.CrossRefPubMed Everett MJ, Davies DT. Pseudomonas aeruginosa elastase (lasB) as a therapeutic target. Drug Discov Today. 2021;26(9):2108–23.CrossRefPubMed
22.
go back to reference Jin XJ, Gong YL, Yang L, et al. Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa. Zhonghua Shao Shang Za Zhi. 2018;34(4):233–9.PubMed Jin XJ, Gong YL, Yang L, et al. Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa. Zhonghua Shao Shang Za Zhi. 2018;34(4):233–9.PubMed
23.
go back to reference Tran DH, Tran HT, Pham TNM, Phung HTT. Direct multiplex recombinase polymerase amplification for rapid detection of S taphylococcus aureus and Pseudomonas aeruginosa in food. Mol Biol Res Commun. 2022;11(1):1–10.PubMedPubMedCentral Tran DH, Tran HT, Pham TNM, Phung HTT. Direct multiplex recombinase polymerase amplification for rapid detection of S taphylococcus aureus and Pseudomonas aeruginosa in food. Mol Biol Res Commun. 2022;11(1):1–10.PubMedPubMedCentral
24.
go back to reference Raja B, Goux HJ, Marapadaga A, Rajagopalan S, Kourentzi K, Willson RC. Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens. J Appl Microbiol. 2017;123(2):544–55.CrossRefPubMedPubMedCentral Raja B, Goux HJ, Marapadaga A, Rajagopalan S, Kourentzi K, Willson RC. Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens. J Appl Microbiol. 2017;123(2):544–55.CrossRefPubMedPubMedCentral
25.
go back to reference Yang HT, Wang Y, Yang QK, Fan H, Wang L, Zhang TM, Li ZX, Liu G, Zhao PP, Wu HH, Dong JQ, Liang W. A rapid and sensitive detection method for Pseudomonas aeruginosa using visualized recombinase polymerase amplification and lateral flow strip technology. Front Cell Infect Microbiol. 2021;11:698929.CrossRefPubMedPubMedCentral Yang HT, Wang Y, Yang QK, Fan H, Wang L, Zhang TM, Li ZX, Liu G, Zhao PP, Wu HH, Dong JQ, Liang W. A rapid and sensitive detection method for Pseudomonas aeruginosa using visualized recombinase polymerase amplification and lateral flow strip technology. Front Cell Infect Microbiol. 2021;11:698929.CrossRefPubMedPubMedCentral
26.
go back to reference Stratakos AC, Linton M, Millington S, Grant IR. A loop-mediated isothermal amplification method for rapid direct detection and differentiation of nonpathogenic and verocytotoxigenic Escherichia coli in beef and bovine faeces. J Appl Microbiol. 2017;122(3):817–28.CrossRefPubMed Stratakos AC, Linton M, Millington S, Grant IR. A loop-mediated isothermal amplification method for rapid direct detection and differentiation of nonpathogenic and verocytotoxigenic Escherichia coli in beef and bovine faeces. J Appl Microbiol. 2017;122(3):817–28.CrossRefPubMed
27.
go back to reference Golpayegani A, Nodehi RN, Rezaei F, Alimohammadi M, Douraghi M. Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates. Mol Biol Rep. 2019;46(4):4049–61.CrossRefPubMed Golpayegani A, Nodehi RN, Rezaei F, Alimohammadi M, Douraghi M. Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates. Mol Biol Rep. 2019;46(4):4049–61.CrossRefPubMed
28.
go back to reference Cabrera R, Fernández-Barat L, Vázquez N, Alcaraz-Serrano V, Bueno-Freire L, Amaro R, López-Aladid R, Oscanoa P, Muñoz L, Vila J. Torres. Resistance mechanisms and molecular epidemiology of Pseudomonas aeruginosa strains from patients with bronchiectasis. J Antimicrob Chemother. 2022;77(6):1600–10.CrossRefPubMedPubMedCentral Cabrera R, Fernández-Barat L, Vázquez N, Alcaraz-Serrano V, Bueno-Freire L, Amaro R, López-Aladid R, Oscanoa P, Muñoz L, Vila J. Torres. Resistance mechanisms and molecular epidemiology of Pseudomonas aeruginosa strains from patients with bronchiectasis. J Antimicrob Chemother. 2022;77(6):1600–10.CrossRefPubMedPubMedCentral
29.
go back to reference Li DX, Shu GL, Wang WJ, Wu Y, Niu HC. Simple, rapid and sensitive detection of Pseudomonas aeruginesa by colorimetric multiple cross displacement amplification. Curr Med Sci. 2020;40(2):372–9.CrossRefPubMed Li DX, Shu GL, Wang WJ, Wu Y, Niu HC. Simple, rapid and sensitive detection of Pseudomonas aeruginesa by colorimetric multiple cross displacement amplification. Curr Med Sci. 2020;40(2):372–9.CrossRefPubMed
30.
go back to reference Dong K, Kang ZM, Ji X, Zhang XX, Cheng PN, Sun B. A Loop-mediated isothermal amplification with a nanoparticle-based lateral flow biosensor assay to detect Pseudomonas aeruginosa in Endophthalmitis. Transl Vis Sci Techno. 2021;10(14):26.CrossRef Dong K, Kang ZM, Ji X, Zhang XX, Cheng PN, Sun B. A Loop-mediated isothermal amplification with a nanoparticle-based lateral flow biosensor assay to detect Pseudomonas aeruginosa in Endophthalmitis. Transl Vis Sci Techno. 2021;10(14):26.CrossRef
31.
go back to reference Xie GY, Yu S, Li W, Mu D, Aguilar ZP, Xu HY. Simultaneous detection of Salmonella spp, Pseudomonas aeruginosa, Bacillus cereus, and Escherichia coli O157: H7 in environmental water using PMA combined with mPCR. J Microbiol. 2020; 58(8): 668–674. Xie GY, Yu S, Li W, Mu D, Aguilar ZP, Xu HY. Simultaneous detection of Salmonella spp, Pseudomonas aeruginosa, Bacillus cereus, and Escherichia coli O157: H7 in environmental water using PMA combined with mPCR. J Microbiol. 2020; 58(8): 668–674.
32.
go back to reference Manajit O, Longyant S, Sithigorngul P, Chaivisuthangkura P. Development of uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification coupled with nanogold probe (UDG-LAMP-AuNP) for specific detection of Pseudomonas aeruginosa. Mol Med Rep. 2018;17(4):5734–43.PubMedPubMedCentral Manajit O, Longyant S, Sithigorngul P, Chaivisuthangkura P. Development of uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification coupled with nanogold probe (UDG-LAMP-AuNP) for specific detection of Pseudomonas aeruginosa. Mol Med Rep. 2018;17(4):5734–43.PubMedPubMedCentral
Metadata
Title
Rapid, sensitive, and user-friendly detection of Pseudomonas aeruginosa using the RPA/CRISPR/Cas12a system
Authors
Wenjing Zhang
Hai Qu
Xin Wu
Jingjing Shi
Xinling Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2024
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-024-09348-3

Other articles of this Issue 1/2024

BMC Infectious Diseases 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.