Skip to main content
Top

27-04-2024 | Desflurane | RESEARCH

Desflurane alleviates LPS-induced acute lung injury by modulating let-7b-5p/HOXA9 axis

Authors: Xiaoyun Shi, Yundie Li, Shibiao Chen, Huaping Xu, Xiuhong Wang

Published in: Immunologic Research

Login to get access

Abstract

Acute lung injury (ALI) is characterized by acute respiratory failure with tachypnea and widespread alveolar infiltrates, badly affecting patients’ health. Desflurane (Des) is effective against lung injury. However, its mechanism in ALI remains unknown. BEAS-2B cells were incubated with lipopolysaccharide (LPS) to construct an ALI cell model. Cell apoptosis was evaluated using flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to examine the levels of inflammatory cytokines. Interactions among let-7b-5p, homeobox A9 (HOXA9), and suppressor of cytokine signaling 2 (SOCS2) were verified using Dual luciferase activity, chromatin immunoprecipitation (ChIP), and RNA pull-down analysis. All experimental data of this study were derived from three repeated experiments. Des treatment improved LPS-induced cell viability, reduced inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)) levels, decreased cell apoptosis, down-regulated the pro-apoptotic proteins (Bcl-2-associated X protein (Bax) and cleaved caspase 3) expression, and up-regulated the anti-apoptotic protein B-cell-lymphoma-2 (Bcl-2) expression in LPS-induced BEAS-2B cells. Des treatment down-regulated let-7b-5p expression in LPS-induced BEAS-2B cells. Moreover, let-7b-5p inhibition improved LPS-induced cell injury. let-7b-5p overexpression weakened the protective effects of Des. Mechanically, let-7b-5p could negatively modulate HOXA9 expression. Furthermore, HOXA9 inhibited the NF-κB signaling by enhancing SOCS2 transcription. HOXA9 overexpression weakened the promotion of let-7b-5p mimics in LPS-induced cell injury. Des alleviated LPS-induced ALI via regulating let-7b-5p/ HOXA9/NF-κB axis.

Graphical Abstract

Appendix
Available only for authorised users
Literature
9.
go back to reference Tosun M, Olmez H, Unver E, Arslan YK, Cimen FK, Ozcicek A et al. Oxidative and pro-inflammatory lung injury induced by desflurane inhalation in rats and the protective effect of rutin. Adv Clin Exp Med. 2021;30(9):941–8. https://doi.org/10.17219/acem/136194. Tosun M, Olmez H, Unver E, Arslan YK, Cimen FK, Ozcicek A et al. Oxidative and pro-inflammatory lung injury induced by desflurane inhalation in rats and the protective effect of rutin. Adv Clin Exp Med. 2021;30(9):941–8. https://​doi.​org/​10.​17219/​acem/​136194.
11.
go back to reference Ishikawa M, Iwasaki M, Zhao H, Saito J, Hu C, Sun Q, et al. Sevoflurane and desflurane exposure enhanced cell proliferation and migration in ovarian cancer cells via miR-210 and miR-138 downregulation. Int J Mol Sci. 2021;22(4):1826. https://doi.org/10.3390/ijms22041826. Ishikawa M, Iwasaki M, Zhao H, Saito J, Hu C, Sun Q, et al. Sevoflurane and desflurane exposure enhanced cell proliferation and migration in ovarian cancer cells via miR-210 and miR-138 downregulation. Int J Mol Sci. 2021;22(4):1826. https://​doi.​org/​10.​3390/​ijms22041826.
Metadata
Title
Desflurane alleviates LPS-induced acute lung injury by modulating let-7b-5p/HOXA9 axis
Authors
Xiaoyun Shi
Yundie Li
Shibiao Chen
Huaping Xu
Xiuhong Wang
Publication date
27-04-2024
Publisher
Springer US
Published in
Immunologic Research
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-024-09474-9