Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2024

Open Access 01-12-2024 | Hydrocephalus | Research

Choroid plexus immune cell response in murine hydrocephalus induced by intraventricular hemorrhage

Authors: Yingfeng Wan, Xiongjie Fu, Tianjie Zhang, Ya Hua, Richard F. Keep, Guohua Xi

Published in: Fluids and Barriers of the CNS | Issue 1/2024

Login to get access

Abstract

Background

Intraventricular hemorrhage (IVH) and associated hydrocephalus are significant complications of intracerebral and subarachnoid hemorrhage. Despite proximity to IVH, the immune cell response at the choroid plexus (ChP) has been relatively understudied. This study employs CX3CR-1GFP mice, which marks multiple immune cell populations, and immunohistochemistry to outline that response.

Methods

This study had four parts all examining male adult CX3CR-1GFP mice. Part 1 examined naïve mice. In part 2, mice received an injection 30 µl of autologous blood into right ventricle and were euthanized at 24 h. In part 3, mice underwent intraventricular injection of saline, iron or peroxiredoxin 2 (Prx-2) and were euthanized at 24 h. In part 4, mice received intraventricular iron injection and were treated with either control or clodronate liposomes and were euthanized at 24 h. All mice underwent magnetic resonance imaging to quantify ventricular volume. The ChP immune cell response was examined by combining analysis of GFP(+) immune cells and immunofluorescence staining.

Results

IVH and intraventricular iron or Prx-2 injection in CX3CR-1GFP mice all induced ventriculomegaly and activation of ChP immune cells. There were very marked increases in the numbers of ChP epiplexus macrophages, T lymphocytes and neutrophils. Co-injection of clodronate liposomes with iron reduced the ventriculomegaly which was associated with fewer epiplexus and stromal macrophages but not reduced T lymphocytes and neutrophils.

Conclusion

There is a marked immune cell response at the ChP in IVH involving epiplexus cells, T lymphocytes and neutrophils. The blood components iron and Prx-2 may play a role in eliciting that response. Reduction of ChP macrophages with clodronate liposomes reduced iron-induced ventriculomegaly suggesting that ChP macrophages may be a promising therapeutic target for managing IVH-induced hydrocephalus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, Hemphill JC 3rd, Johnson R, Keigher KM, Mack WJ, et al. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a Guideline from the American Heart Association/American Stroke Association. Stroke. 2022;53(7):e282–361.PubMedCrossRef Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, Hemphill JC 3rd, Johnson R, Keigher KM, Mack WJ, et al. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a Guideline from the American Heart Association/American Stroke Association. Stroke. 2022;53(7):e282–361.PubMedCrossRef
2.
go back to reference Karimy JK, Reeves BC, Damisah E, Duy PQ, Antwi P, David W, Wang K, Schiff SJ, Limbrick DD Jr., Alper SL, et al. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat Rev Neurol. 2020;16(5):285–96.PubMedPubMedCentralCrossRef Karimy JK, Reeves BC, Damisah E, Duy PQ, Antwi P, David W, Wang K, Schiff SJ, Limbrick DD Jr., Alper SL, et al. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat Rev Neurol. 2020;16(5):285–96.PubMedPubMedCentralCrossRef
3.
go back to reference Bian C, Wan Y, Koduri S, Hua Y, Keep RF, Xi G. Iron-Induced Hydrocephalus: the role of Choroid Plexus Stromal macrophages. Transl Stroke Res. 2023;14(2):238–49.PubMedCrossRef Bian C, Wan Y, Koduri S, Hua Y, Keep RF, Xi G. Iron-Induced Hydrocephalus: the role of Choroid Plexus Stromal macrophages. Transl Stroke Res. 2023;14(2):238–49.PubMedCrossRef
4.
go back to reference Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab. 2014;34(6):1070–5.PubMedPubMedCentralCrossRef Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab. 2014;34(6):1070–5.PubMedPubMedCentralCrossRef
6.
go back to reference Salzano S, Checconi P, Hanschmann EM, Lillig CH, Bowler LD, Chan P, Vaudry D, Mengozzi M, Coppo L, Sacre S, et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A. 2014;111(33):12157–62.PubMedPubMedCentralCrossRef Salzano S, Checconi P, Hanschmann EM, Lillig CH, Bowler LD, Chan P, Vaudry D, Mengozzi M, Coppo L, Sacre S, et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A. 2014;111(33):12157–62.PubMedPubMedCentralCrossRef
7.
go back to reference Tan X, Chen J, Keep RF, Xi G, Hua Y. Prx2 (Peroxiredoxin 2) as a cause of Hydrocephalus after Intraventricular Hemorrhage. Stroke. 2020;51(5):1578–86.PubMedPubMedCentralCrossRef Tan X, Chen J, Keep RF, Xi G, Hua Y. Prx2 (Peroxiredoxin 2) as a cause of Hydrocephalus after Intraventricular Hemorrhage. Stroke. 2020;51(5):1578–86.PubMedPubMedCentralCrossRef
8.
go back to reference Chen T, Tan X, Xia F, Hua Y, Keep RF, Xi G. Hydrocephalus Induced by Intraventricular Peroxiredoxin-2: the role of macrophages in the Choroid Plexus. Biomolecules 2021, 11(5). Chen T, Tan X, Xia F, Hua Y, Keep RF, Xi G. Hydrocephalus Induced by Intraventricular Peroxiredoxin-2: the role of macrophages in the Choroid Plexus. Biomolecules 2021, 11(5).
9.
go back to reference Demeestere D, Libert C, Vandenbroucke RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today. 2015;20(8):928–41.PubMedCrossRef Demeestere D, Libert C, Vandenbroucke RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today. 2015;20(8):928–41.PubMedCrossRef
10.
11.
go back to reference Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23(8):997–1003.PubMedCrossRef Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23(8):997–1003.PubMedCrossRef
12.
go back to reference Robert SM, Reeves BC, Kiziltug E, Duy PQ, Karimy JK, Mansuri MS, Marlier A, Allington G, Greenberg ABW, DeSpenza T, editors. Jr.: The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus. Cell 2023, 186(4):764–785 e721. Robert SM, Reeves BC, Kiziltug E, Duy PQ, Karimy JK, Mansuri MS, Marlier A, Allington G, Greenberg ABW, DeSpenza T, editors. Jr.: The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus. Cell 2023, 186(4):764–785 e721.
13.
go back to reference Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, et al. High-dimensional single-cell mapping of Central Nervous System Immune cells reveals distinct myeloid subsets in Health, Aging, and Disease. Immunity. 2018;48(2):380–95. e386.PubMedCrossRef Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, et al. High-dimensional single-cell mapping of Central Nervous System Immune cells reveals distinct myeloid subsets in Health, Aging, and Disease. Immunity. 2018;48(2):380–95. e386.PubMedCrossRef
14.
go back to reference Rajan WD, Wojtas B, Gielniewski B, Miro-Mur F, Pedragosa J, Zawadzka M, Pilanc P, Planas AM, Kaminska B. Defining molecular identity and fates of CNS-border associated macrophages after ischemic stroke in rodents and humans. Neurobiol Dis. 2020;137:104722.PubMedCrossRef Rajan WD, Wojtas B, Gielniewski B, Miro-Mur F, Pedragosa J, Zawadzka M, Pilanc P, Planas AM, Kaminska B. Defining molecular identity and fates of CNS-border associated macrophages after ischemic stroke in rodents and humans. Neurobiol Dis. 2020;137:104722.PubMedCrossRef
15.
go back to reference Wan H, Brathwaite S, Ai J, Hynynen K, Macdonald RL. Role of perivascular and meningeal macrophages in outcome following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2021;41(8):1842–57.PubMedPubMedCentralCrossRef Wan H, Brathwaite S, Ai J, Hynynen K, Macdonald RL. Role of perivascular and meningeal macrophages in outcome following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2021;41(8):1842–57.PubMedPubMedCentralCrossRef
16.
go back to reference Peng K, Koduri S, Xia F, Gao F, Hua Y, Keep RF, Xi G. Impact of sex differences on thrombin-induced hydrocephalus and white matter injury: the role of neutrophils. Fluids Barriers CNS. 2021;18(1):38.PubMedPubMedCentralCrossRef Peng K, Koduri S, Xia F, Gao F, Hua Y, Keep RF, Xi G. Impact of sex differences on thrombin-induced hydrocephalus and white matter injury: the role of neutrophils. Fluids Barriers CNS. 2021;18(1):38.PubMedPubMedCentralCrossRef
17.
go back to reference Moreno SG. Depleting macrophages in vivo with clodronate-liposomes. Methods Mol Biol. 2018;1784:259–62.PubMedCrossRef Moreno SG. Depleting macrophages in vivo with clodronate-liposomes. Methods Mol Biol. 2018;1784:259–62.PubMedCrossRef
18.
go back to reference Jing C, Bian L, Wang M, Keep RF, Xi G, Hua Y. Enhancement of Hematoma Clearance with CD47 blocking antibody in experimental intracerebral hemorrhage. Stroke. 2019;50(6):1539–47.PubMedPubMedCentralCrossRef Jing C, Bian L, Wang M, Keep RF, Xi G, Hua Y. Enhancement of Hematoma Clearance with CD47 blocking antibody in experimental intracerebral hemorrhage. Stroke. 2019;50(6):1539–47.PubMedPubMedCentralCrossRef
19.
go back to reference Li T, Zhao J, Gao H. Depletion of Arg1-Positive Microglia/Macrophages exacerbates cerebral ischemic damage by facilitating the inflammatory response. Int J Mol Sci 2022, 23(21). Li T, Zhao J, Gao H. Depletion of Arg1-Positive Microglia/Macrophages exacerbates cerebral ischemic damage by facilitating the inflammatory response. Int J Mol Sci 2022, 23(21).
20.
go back to reference Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med. 1990;172(4):1025–33.PubMedCrossRef Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med. 1990;172(4):1025–33.PubMedCrossRef
21.
go back to reference Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol. 1999;158(2):351–65.PubMedCrossRef Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol. 1999;158(2):351–65.PubMedCrossRef
22.
go back to reference Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20(11):4106–14.PubMedPubMedCentralCrossRef Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20(11):4106–14.PubMedPubMedCentralCrossRef
23.
go back to reference Blomster LV, Brennan FH, Lao HW, Harle DW, Harvey AR, Ruitenberg MJ. Mobilisation of the splenic monocyte reservoir and peripheral CX(3)CR1 deficiency adversely affects recovery from spinal cord injury. Exp Neurol. 2013;247:226–40.PubMedCrossRef Blomster LV, Brennan FH, Lao HW, Harle DW, Harvey AR, Ruitenberg MJ. Mobilisation of the splenic monocyte reservoir and peripheral CX(3)CR1 deficiency adversely affects recovery from spinal cord injury. Exp Neurol. 2013;247:226–40.PubMedCrossRef
24.
go back to reference Katsumoto A, Miranda AS, Butovsky O, Teixeira AL, Ransohoff RM, Lamb BT. Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model. J Neuroinflammation. 2018;15(1):26.PubMedPubMedCentralCrossRef Katsumoto A, Miranda AS, Butovsky O, Teixeira AL, Ransohoff RM, Lamb BT. Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model. J Neuroinflammation. 2018;15(1):26.PubMedPubMedCentralCrossRef
25.
go back to reference Karpati S, Hubert V, Hristovska I, Lerouge F, Chaput F, Bretonniere Y, Andraud C, Banyasz A, Micouin G, Monteil M, et al. Hybrid multimodal contrast agent for multiscale in vivo investigation of neuroinflammation. Nanoscale. 2021;13(6):3767–81.PubMedCrossRef Karpati S, Hubert V, Hristovska I, Lerouge F, Chaput F, Bretonniere Y, Andraud C, Banyasz A, Micouin G, Monteil M, et al. Hybrid multimodal contrast agent for multiscale in vivo investigation of neuroinflammation. Nanoscale. 2021;13(6):3767–81.PubMedCrossRef
26.
go back to reference Cui J, Shipley FB, Shannon ML, Alturkistani O, Dani N, Webb MD, Sugden AU, Andermann ML, Lehtinen MK. Inflammation of the embryonic choroid Plexus Barrier following maternal Immune activation. Dev Cell. 2020;55(5):617–e628616.PubMedPubMedCentralCrossRef Cui J, Shipley FB, Shannon ML, Alturkistani O, Dani N, Webb MD, Sugden AU, Andermann ML, Lehtinen MK. Inflammation of the embryonic choroid Plexus Barrier following maternal Immune activation. Dev Cell. 2020;55(5):617–e628616.PubMedPubMedCentralCrossRef
27.
go back to reference Shipley FB, Dani N, Xu H, Deister C, Cui J, Head JP, Sadegh C, Fame RM, Shannon ML, Flores VI, et al. Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron. 2020;108(4):623–e639610.PubMedPubMedCentralCrossRef Shipley FB, Dani N, Xu H, Deister C, Cui J, Head JP, Sadegh C, Fame RM, Shannon ML, Flores VI, et al. Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron. 2020;108(4):623–e639610.PubMedPubMedCentralCrossRef
28.
go back to reference Wan Y, Gao F, Ye F, Yang W, Hua Y, Keep RF, Xi G. Effects of aging on hydrocephalus after intraventricular hemorrhage. Fluids Barriers CNS. 2020;17(1):8.PubMedPubMedCentralCrossRef Wan Y, Gao F, Ye F, Yang W, Hua Y, Keep RF, Xi G. Effects of aging on hydrocephalus after intraventricular hemorrhage. Fluids Barriers CNS. 2020;17(1):8.PubMedPubMedCentralCrossRef
29.
go back to reference Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke. 2009;40(5):1858–63.PubMedPubMedCentralCrossRef Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke. 2009;40(5):1858–63.PubMedPubMedCentralCrossRef
30.
go back to reference Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke. 2011;42(2):465–70.PubMedCrossRef Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke. 2011;42(2):465–70.PubMedCrossRef
31.
go back to reference Cao Y, Liu C, Li G, Gao W, Tang H, Fan S, Tang X, Zhao L, Wang H, Peng A, et al. Metformin alleviates delayed Hydrocephalus after Intraventricular Hemorrhage by inhibiting inflammation and fibrosis. Transl Stroke Res. 2023;14(3):364–82.PubMedCrossRef Cao Y, Liu C, Li G, Gao W, Tang H, Fan S, Tang X, Zhao L, Wang H, Peng A, et al. Metformin alleviates delayed Hydrocephalus after Intraventricular Hemorrhage by inhibiting inflammation and fibrosis. Transl Stroke Res. 2023;14(3):364–82.PubMedCrossRef
32.
go back to reference Fu P, Zhang M, Wu M, Zhou W, Yin X, Chen Z, Dan C. Research progress of endogenous hematoma absorption after intracerebral hemorrhage. Front Neurol. 2023;14:1115726.PubMedPubMedCentralCrossRef Fu P, Zhang M, Wu M, Zhou W, Yin X, Chen Z, Dan C. Research progress of endogenous hematoma absorption after intracerebral hemorrhage. Front Neurol. 2023;14:1115726.PubMedPubMedCentralCrossRef
33.
go back to reference Hermann DM, Kleinschnitz C, Gunzer M. Implications of polymorphonuclear neutrophils for ischemic stroke and intracerebral hemorrhage: predictive value, pathophysiological consequences and utility as therapeutic target. J Neuroimmunol. 2018;321:138–43.PubMedCrossRef Hermann DM, Kleinschnitz C, Gunzer M. Implications of polymorphonuclear neutrophils for ischemic stroke and intracerebral hemorrhage: predictive value, pathophysiological consequences and utility as therapeutic target. J Neuroimmunol. 2018;321:138–43.PubMedCrossRef
34.
go back to reference Zhao X, Ting SM, Sun G, Roy-O’Reilly M, Mobley AS, Bautista Garrido J, Zheng X, Obertas L, Jung JE, Kruzel M, et al. Beneficial role of neutrophils through function of Lactoferrin after Intracerebral Hemorrhage. Stroke. 2018;49(5):1241–7.PubMedPubMedCentralCrossRef Zhao X, Ting SM, Sun G, Roy-O’Reilly M, Mobley AS, Bautista Garrido J, Zheng X, Obertas L, Jung JE, Kruzel M, et al. Beneficial role of neutrophils through function of Lactoferrin after Intracerebral Hemorrhage. Stroke. 2018;49(5):1241–7.PubMedPubMedCentralCrossRef
35.
go back to reference Wang YR, Cui WQ, Wu HY, Xu XD, Xu XQ. The role of T cells in acute ischemic stroke. Brain Res Bull. 2023;196:20–33.PubMedCrossRef Wang YR, Cui WQ, Wu HY, Xu XD, Xu XQ. The role of T cells in acute ischemic stroke. Brain Res Bull. 2023;196:20–33.PubMedCrossRef
36.
go back to reference Nakano K, Hokamura K, Taniguchi N, Wada K, Kudo C, Nomura R, Kojima A, Naka S, Muranaka Y, Thura M, et al. The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke. Nat Commun. 2011;2: 485. Nakano K, Hokamura K, Taniguchi N, Wada K, Kudo C, Nomura R, Kojima A, Naka S, Muranaka Y, Thura M, et al. The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke. Nat Commun. 2011;2: 485.
37.
go back to reference Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.PubMedCrossRef Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.PubMedCrossRef
38.
go back to reference Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G. Activation of Epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci Ther. 2019;25(10):1134–41.PubMedPubMedCentralCrossRef Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G. Activation of Epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci Ther. 2019;25(10):1134–41.PubMedPubMedCentralCrossRef
39.
go back to reference Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 2018, 19(6). Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 2018, 19(6).
40.
go back to reference Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.PubMedCrossRef Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.PubMedCrossRef
41.
go back to reference Ge R, Tornero D, Hirota M, Monni E, Laterza C, Lindvall O, Kokaia Z. Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. J Neuroinflammation. 2017;14(1):153.PubMedPubMedCentralCrossRef Ge R, Tornero D, Hirota M, Monni E, Laterza C, Lindvall O, Kokaia Z. Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. J Neuroinflammation. 2017;14(1):153.PubMedPubMedCentralCrossRef
42.
go back to reference Llovera G, Benakis C, Enzmann G, Cai R, Arzberger T, Ghasemigharagoz A, Mao X, Malik R, Lazarevic I, Liebscher S, et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 2017;134(6):851–68.PubMedCrossRef Llovera G, Benakis C, Enzmann G, Cai R, Arzberger T, Ghasemigharagoz A, Mao X, Malik R, Lazarevic I, Liebscher S, et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 2017;134(6):851–68.PubMedCrossRef
43.
go back to reference Ryan G, Grimes T, Brankin B, Mabruk MJ, Hosie MJ, Jarrett O, Callanan JJ. Neuropathology associated with feline immunodeficiency virus infection highlights prominent lymphocyte trafficking through both the blood-brain and blood-choroid plexus barriers. J Neurovirol. 2005;11(4):337–45.PubMedCrossRef Ryan G, Grimes T, Brankin B, Mabruk MJ, Hosie MJ, Jarrett O, Callanan JJ. Neuropathology associated with feline immunodeficiency virus infection highlights prominent lymphocyte trafficking through both the blood-brain and blood-choroid plexus barriers. J Neurovirol. 2005;11(4):337–45.PubMedCrossRef
44.
go back to reference Xu YZ, Nygard M, Kristensson K, Bentivoglio M. Regulation of cytokine signaling and T-cell recruitment in the aging mouse brain in response to central inflammatory challenge. Brain Behav Immun. 2010;24(1):138–52.PubMedCrossRef Xu YZ, Nygard M, Kristensson K, Bentivoglio M. Regulation of cytokine signaling and T-cell recruitment in the aging mouse brain in response to central inflammatory challenge. Brain Behav Immun. 2010;24(1):138–52.PubMedCrossRef
45.
go back to reference Engelhardt B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm (Vienna). 2006;113(4):477–85.PubMedCrossRef Engelhardt B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm (Vienna). 2006;113(4):477–85.PubMedCrossRef
46.
go back to reference Martin R, McFarland HF. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci. 1995;32(2):121–82.PubMedCrossRef Martin R, McFarland HF. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci. 1995;32(2):121–82.PubMedCrossRef
47.
go back to reference Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991;28(2):254–60.PubMedCrossRef Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991;28(2):254–60.PubMedCrossRef
48.
go back to reference Strominger I, Elyahu Y, Berner O, Reckhow J, Mittal K, Nemirovsky A, Monsonego A. The Choroid Plexus functions as a Niche for T-Cell Stimulation within the Central Nervous System. Front Immunol. 2018;9:1066.PubMedPubMedCentralCrossRef Strominger I, Elyahu Y, Berner O, Reckhow J, Mittal K, Nemirovsky A, Monsonego A. The Choroid Plexus functions as a Niche for T-Cell Stimulation within the Central Nervous System. Front Immunol. 2018;9:1066.PubMedPubMedCentralCrossRef
50.
go back to reference Jin J, Zhao X, Li W, Wang F, Tian J, Wang N, Gao X, Zhang J, Wu J, Mang G, et al. Neutrophil extracellular traps: a novel therapeutic target for intracranial hemorrhage. Thromb Res. 2022;219:1–13.PubMedCrossRef Jin J, Zhao X, Li W, Wang F, Tian J, Wang N, Gao X, Zhang J, Wu J, Mang G, et al. Neutrophil extracellular traps: a novel therapeutic target for intracranial hemorrhage. Thromb Res. 2022;219:1–13.PubMedCrossRef
51.
go back to reference Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, Cao Y, Xu H, Luo H, Lu L, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11(1):2488.PubMedPubMedCentralCrossRef Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, Cao Y, Xu H, Luo H, Lu L, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11(1):2488.PubMedPubMedCentralCrossRef
52.
go back to reference van Rooijen N, van Kesteren-Hendrikx E. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res. 2002;12(1–2):81–94.PubMedCrossRef van Rooijen N, van Kesteren-Hendrikx E. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res. 2002;12(1–2):81–94.PubMedCrossRef
53.
go back to reference van Rooijen N, Hendrikx E. Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol. 2010;605:189–203.PubMedCrossRef van Rooijen N, Hendrikx E. Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol. 2010;605:189–203.PubMedCrossRef
Metadata
Title
Choroid plexus immune cell response in murine hydrocephalus induced by intraventricular hemorrhage
Authors
Yingfeng Wan
Xiongjie Fu
Tianjie Zhang
Ya Hua
Richard F. Keep
Guohua Xi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2024
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-024-00538-4

Other articles of this Issue 1/2024

Fluids and Barriers of the CNS 1/2024 Go to the issue