Skip to main content
Top
Published in: Trials 1/2024

Open Access 01-12-2024 | Disseminated Intravascular Coagulation | Study protocol

Efficacy and safety of heparin for sepsis-induced disseminated intravascular coagulation (HepSIC): study protocol for a multicenter randomized controlled trial

Authors: Yini Sun, Renyu Ding, Hao Sun, Yingjian Liang, Xiaochun Ma

Published in: Trials | Issue 1/2024

Login to get access

Abstract

Background

Disseminated intravascular coagulation (DIC) occurs in 30–50% of septic patients and contributes to high mortality in the intensive care unit (ICU). However, there are few proven interventions for coagulation disorder management in sepsis. Experimental and clinical data have demonstrated that sepsis could benefit from unfractionated heparin (UFH) treatment. To date, there are no large multicenter trials to determine the safety and efficacy of UFH in septic patients with suspected DIC.

Methods

A multicenter, double-blinded, placebo-controlled randomized trial is designed to recruit 600 patients who met sepsis 3.0 criteria and suspected DIC. Participants will be randomized (1:1) to receive UFH or saline via continuous intravenous administration for 7 days within 6 h of enrolment. The primary outcome is ICU mortality. The secondary outcome includes 28-day all-cause mortality, the improvement of Sequential Organ Failure Assessment scores, and the incidence of major hemorrhage. Investigators, participants, and statisticians will be blinded to the allocation.

Discussion

The HepSIC trial is to evaluate the efficacy and safety of UFH on sepsis-related DIC across different areas of China. The small dosage of UFH administration would offer a new potential approach for treating sepsis-related coagulation disorders.

Ethics and dissemination

Ethical approval was granted by all the ethics committees of 20 participant centers. Results will be disseminated via peer-reviewed publications and presented at conferences.

Trial registration

ClinicalTrials.gov NCT02654561. Registered on 13 January 2016.
Appendix
Available only for authorised users
Literature
1.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016;315(8):801–10.CrossRefPubMedPubMedCentral Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016;315(8):801–10.CrossRefPubMedPubMedCentral
2.
go back to reference Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.CrossRefPubMedPubMedCentral Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.CrossRefPubMedPubMedCentral
3.
go back to reference Dhainaut JF, Shorr AF, Macias WL, Kollef MJ, Levi M, Reinhart K, et al. Dynamic evolution of coagulopathy in the first day of severe sepsis: relationship with mortality and organ failure. Crit Care Med. 2005;33(2):341–8.CrossRefPubMed Dhainaut JF, Shorr AF, Macias WL, Kollef MJ, Levi M, Reinhart K, et al. Dynamic evolution of coagulopathy in the first day of severe sepsis: relationship with mortality and organ failure. Crit Care Med. 2005;33(2):341–8.CrossRefPubMed
5.
go back to reference Riewald M, Ruf W. Science review: role of coagulation protease cascades in sepsis. Crit Care. 2003;7(2):123–9.CrossRefPubMed Riewald M, Ruf W. Science review: role of coagulation protease cascades in sepsis. Crit Care. 2003;7(2):123–9.CrossRefPubMed
6.
go back to reference Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care. 2003;7(1):23–38.CrossRefPubMed Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care. 2003;7(1):23–38.CrossRefPubMed
7.
go back to reference Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, Kondaveeti S, et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med. 2001;345(6):408–16.CrossRefPubMed Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, Kondaveeti S, et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med. 2001;345(6):408–16.CrossRefPubMed
8.
go back to reference Philippe J, Offner F, Declerck PJ, Leroux- Roels G, Vogelaers D, Baele G, et al. Fibrinolysis and coagulation in patients with infectious disease and sepsis. Thrombosis and Haemostasis. 1991;65(3):291–5.CrossRefPubMed Philippe J, Offner F, Declerck PJ, Leroux- Roels G, Vogelaers D, Baele G, et al. Fibrinolysis and coagulation in patients with infectious disease and sepsis. Thrombosis and Haemostasis. 1991;65(3):291–5.CrossRefPubMed
9.
go back to reference Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709.CrossRefPubMed Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709.CrossRefPubMed
10.
go back to reference Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. Jama. 2001;286(15):1869–78.CrossRefPubMed Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. Jama. 2001;286(15):1869–78.CrossRefPubMed
11.
go back to reference Vincent JL, Ramesh MK, Ernest D, LaRosa SP, Pachl J, Aikawa N, et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit Care Med. 2013;41(9):2069–79.CrossRefPubMed Vincent JL, Ramesh MK, Ernest D, LaRosa SP, Pachl J, Aikawa N, et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit Care Med. 2013;41(9):2069–79.CrossRefPubMed
12.
go back to reference Umemura Y, Yamakawa K, Ogura H, Yuhara H, Fujimi S. Efficacy and safety of anticoagulant therapy in three specific populations with sepsis: a meta-analysis of randomized controlled trials. J Thromb Haemost. 2016;14(3):518–30.CrossRefPubMed Umemura Y, Yamakawa K, Ogura H, Yuhara H, Fujimi S. Efficacy and safety of anticoagulant therapy in three specific populations with sepsis: a meta-analysis of randomized controlled trials. J Thromb Haemost. 2016;14(3):518–30.CrossRefPubMed
13.
go back to reference Vincent JL, Francois B, Zabolotskikh I, Daga MK, Lascarrou JB, Kirov MY, et al. Effect of a Recombinant Human Soluble Thrombomodulin on Mortality in Patients With Sepsis-Associated Coagulopathy The SCARLET Randomized Clinical Trial. Jama. 2019;321(20):1993–2002.CrossRefPubMedPubMedCentral Vincent JL, Francois B, Zabolotskikh I, Daga MK, Lascarrou JB, Kirov MY, et al. Effect of a Recombinant Human Soluble Thrombomodulin on Mortality in Patients With Sepsis-Associated Coagulopathy The SCARLET Randomized Clinical Trial. Jama. 2019;321(20):1993–2002.CrossRefPubMedPubMedCentral
14.
go back to reference Levi M, Vincent JL, Tanaka K, Radford AH, Kayanoki T, Fineberg DA, et al. Effect of a Recombinant Human Soluble Thrombomodulin on Baseline Coagulation Biomarker Levels and Mortality Outcome in Patients With Sepsis-Associated Coagulopathy. Crit Care Med. 2020;48(8):1140–7.CrossRefPubMedPubMedCentral Levi M, Vincent JL, Tanaka K, Radford AH, Kayanoki T, Fineberg DA, et al. Effect of a Recombinant Human Soluble Thrombomodulin on Baseline Coagulation Biomarker Levels and Mortality Outcome in Patients With Sepsis-Associated Coagulopathy. Crit Care Med. 2020;48(8):1140–7.CrossRefPubMedPubMedCentral
15.
go back to reference Ding R, Zhao D, Guo R, Zhang Z, Ma X. Treatment with unfractionated heparin attenuates coagulation and inflammation in endotoxemic mice. Thromb Res. 2011;128(6):e160–5.CrossRefPubMed Ding R, Zhao D, Guo R, Zhang Z, Ma X. Treatment with unfractionated heparin attenuates coagulation and inflammation in endotoxemic mice. Thromb Res. 2011;128(6):e160–5.CrossRefPubMed
16.
go back to reference Li X, Zheng Z, Mao Y, Ma X. Unfractionated heparin promotes LPS-induced endothelial barrier dysfunction: a preliminary study on the roles of angiopoietin/Tie2 axis. Thromb Res. 2012;129(5):e223–8.CrossRefPubMed Li X, Zheng Z, Mao Y, Ma X. Unfractionated heparin promotes LPS-induced endothelial barrier dysfunction: a preliminary study on the roles of angiopoietin/Tie2 axis. Thromb Res. 2012;129(5):e223–8.CrossRefPubMed
17.
go back to reference Wildhagen KCAA, Garcia de Frutos P, Reutelingsperger CP, Schrijver R, Areste C, Orega-Gomez A, et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood. 2014;123(7):1098–101.CrossRefPubMed Wildhagen KCAA, Garcia de Frutos P, Reutelingsperger CP, Schrijver R, Areste C, Orega-Gomez A, et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood. 2014;123(7):1098–101.CrossRefPubMed
18.
go back to reference Wang C, Chi C, Guo L, Wang X, Guo L, Sun J, et al. Heparin therapy reduces 28-day mortality in adult severe sepsis patients: a systematic review and meta-analysis. Crit Care. 2014;18(5):563.CrossRefPubMedPubMedCentral Wang C, Chi C, Guo L, Wang X, Guo L, Sun J, et al. Heparin therapy reduces 28-day mortality in adult severe sepsis patients: a systematic review and meta-analysis. Crit Care. 2014;18(5):563.CrossRefPubMedPubMedCentral
19.
go back to reference Zarychanski R, Abou-Setta AM, Kanji S, Turgeon AF, Kumar A, Houston DS, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med. 2015;43(3):511–8.CrossRefPubMed Zarychanski R, Abou-Setta AM, Kanji S, Turgeon AF, Kumar A, Houston DS, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med. 2015;43(3):511–8.CrossRefPubMed
20.
go back to reference Zarychanski R, Doucette S, Fergusson D, Roberts D, Houston DS, Sharma S, et al. Early intravenous unfractionated heparin and mortality in septic shock. Crit Care Med. 2008;36(11):2973–9.CrossRefPubMed Zarychanski R, Doucette S, Fergusson D, Roberts D, Houston DS, Sharma S, et al. Early intravenous unfractionated heparin and mortality in septic shock. Crit Care Med. 2008;36(11):2973–9.CrossRefPubMed
21.
go back to reference Jaimes F, De La Rosa G, Morales C, Fortich F, Arango C, Aguirre D, et al. Unfractioned heparin for treatment of sepsis: A randomized clinical trial (The HETRASE Study). Crit Care Med. 2009;37(4):1185–96.CrossRefPubMed Jaimes F, De La Rosa G, Morales C, Fortich F, Arango C, Aguirre D, et al. Unfractioned heparin for treatment of sepsis: A randomized clinical trial (The HETRASE Study). Crit Care Med. 2009;37(4):1185–96.CrossRefPubMed
22.
go back to reference Crowther MA, Cook DJ, Albert M, Williamson D, Meade M, Granton J, et al. The 4Ts scoring system for heparin-induced thrombocytopenia in medical-surgical intensive care unit patients. J Crit Care. 2010;25(2):287–93.CrossRefPubMed Crowther MA, Cook DJ, Albert M, Williamson D, Meade M, Granton J, et al. The 4Ts scoring system for heparin-induced thrombocytopenia in medical-surgical intensive care unit patients. J Crit Care. 2010;25(2):287–93.CrossRefPubMed
23.
go back to reference Iba T, Levi M, Levy JH. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Semin Thromb Hemost. 2020;46:89–95.CrossRefPubMed Iba T, Levi M, Levy JH. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Semin Thromb Hemost. 2020;46:89–95.CrossRefPubMed
25.
go back to reference Li X, Ma X. The role of heparin in sepsis: much more than just an anticoagulant. Br J Haematol. 2017;179(3):389–98.CrossRefPubMed Li X, Ma X. The role of heparin in sepsis: much more than just an anticoagulant. Br J Haematol. 2017;179(3):389–98.CrossRefPubMed
26.
go back to reference Levi M, van der Poll T. The role of natural anticoagulants in the pathogenesis and management of systemic activation of coagulation and inflammation in critically ill patients. Semin Thromb Hemost. 2008;34(5):459–68.CrossRefPubMed Levi M, van der Poll T. The role of natural anticoagulants in the pathogenesis and management of systemic activation of coagulation and inflammation in critically ill patients. Semin Thromb Hemost. 2008;34(5):459–68.CrossRefPubMed
27.
go back to reference Abraham E, Reinhart K, Opal S, Demeyer I, Doig C, Rodriguez AL, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. Jama. 2003;290(2):238–47.CrossRefPubMed Abraham E, Reinhart K, Opal S, Demeyer I, Doig C, Rodriguez AL, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. Jama. 2003;290(2):238–47.CrossRefPubMed
29.
go back to reference CRASH-2 trial collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.CrossRef CRASH-2 trial collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.CrossRef
30.
go back to reference Li X, Li Z, Zheng Z, Liu Y, Ma X. Unfractionated Heparin Ameliorates Lipopolysaccharide- Induced Lung Inflammation by Downregulating Nuclear Factor-κB Signaling Pathway. Inflammation. 2013;36(6):1201–8.CrossRefPubMed Li X, Li Z, Zheng Z, Liu Y, Ma X. Unfractionated Heparin Ameliorates Lipopolysaccharide- Induced Lung Inflammation by Downregulating Nuclear Factor-κB Signaling Pathway. Inflammation. 2013;36(6):1201–8.CrossRefPubMed
31.
go back to reference Chen S, Zhang X, Sun Y, Hu Z, Lu S, Ma X. Unfractionated heparin attenuates intestinal injury in mouse model of sepsis by inhibiting heparanase. Int J Clin Exp Pathol. 2015;8(5):4903–12.PubMedPubMedCentral Chen S, Zhang X, Sun Y, Hu Z, Lu S, Ma X. Unfractionated heparin attenuates intestinal injury in mouse model of sepsis by inhibiting heparanase. Int J Clin Exp Pathol. 2015;8(5):4903–12.PubMedPubMedCentral
32.
go back to reference Yini S, Heng Z, Xin A, Xiaochun M. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand. 2015;59(2):160–9.CrossRefPubMed Yini S, Heng Z, Xin A, Xiaochun M. Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand. 2015;59(2):160–9.CrossRefPubMed
33.
go back to reference Mu S, Liu Y, Jiang J, Ding R, Li X, Li X, et al. Unfractionated heparin ameliorates pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization in acute lung injury. Respir Res. 2018;19(1):220.CrossRefPubMedPubMedCentral Mu S, Liu Y, Jiang J, Ding R, Li X, Li X, et al. Unfractionated heparin ameliorates pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization in acute lung injury. Respir Res. 2018;19(1):220.CrossRefPubMedPubMedCentral
34.
go back to reference Yang X, Cheng X, Tang Y, Qiu X, Wang Z, Fu G, et al. The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood. 2020;135(14):1087–100.PubMedPubMedCentral Yang X, Cheng X, Tang Y, Qiu X, Wang Z, Fu G, et al. The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood. 2020;135(14):1087–100.PubMedPubMedCentral
35.
go back to reference Tang Y, Wang X, Li Z, He Z, Yang X, Cheng X, et al. Heparin prevents caspase-11-dependent septic lethality independent of anticoagulant properties. Immunity. 2021;54:1–14.CrossRef Tang Y, Wang X, Li Z, He Z, Yang X, Cheng X, et al. Heparin prevents caspase-11-dependent septic lethality independent of anticoagulant properties. Immunity. 2021;54:1–14.CrossRef
Metadata
Title
Efficacy and safety of heparin for sepsis-induced disseminated intravascular coagulation (HepSIC): study protocol for a multicenter randomized controlled trial
Authors
Yini Sun
Renyu Ding
Hao Sun
Yingjian Liang
Xiaochun Ma
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Trials / Issue 1/2024
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-023-07853-5

Other articles of this Issue 1/2024

Trials 1/2024 Go to the issue