Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2024

07-11-2023 | Research Article

Cranial bone imaging using ultrashort echo-time bone-selective MRI as an alternative to gradient-echo based “black-bone” techniques

Authors: Nada Kamona, Brandon C. Jones, Hyunyeol Lee, Hee Kwon Song, Chamith S. Rajapakse, Connor S. Wagner, Scott P. Bartlett, Felix W. Wehrli

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2024

Login to get access

Abstract

Objectives

CT is the clinical standard for surgical planning of craniofacial abnormalities in pediatric patients. This study evaluated three MRI cranial bone imaging techniques for their strengths and limitations as a radiation-free alternative to CT.

Methods

Ten healthy adults were scanned at 3 T with three MRI sequences: dual-radiofrequency and dual-echo ultrashort echo time sequence (DURANDE), zero echo time (ZTE), and gradient-echo (GRE). DURANDE bright-bone images were generated by exploiting bone signal intensity dependence on RF pulse duration and echo time, while ZTE bright-bone images were obtained via logarithmic inversion. Three skull segmentations were derived, and the overlap of the binary masks was quantified using dice similarity coefficient. Craniometric distances were measured, and their agreement was quantified.

Results

There was good overlap of the three masks and excellent agreement among craniometric distances. DURANDE and ZTE showed superior air-bone contrast (i.e., sinuses) and soft-tissue suppression compared to GRE.

Discussions

ZTE has low levels of acoustic noise, however, ZTE images had lower contrast near facial bones (e.g., zygomatic) and require effective bias-field correction to separate bone from air and soft-tissue. DURANDE utilizes a dual-echo subtraction post-processing approach to yield bone-specific images, but the sequence is not currently manufacturer-supported and requires scanner-specific gradient-delay corrections.
Appendix
Available only for authorised users
Literature
2.
go back to reference Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505PubMedPubMedCentralCrossRef Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505PubMedPubMedCentralCrossRef
3.
go back to reference Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ (Clin Res Ed) 346:f2360 Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ (Clin Res Ed) 346:f2360
4.
go back to reference Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, Smith-Bindman R (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167(8):700–707PubMedPubMedCentralCrossRef Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, Smith-Bindman R (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167(8):700–707PubMedPubMedCentralCrossRef
5.
go back to reference Lee H, Zhao X, Song HK, Zhang R, Bartlett SP, Wehrli FW (2019) Rapid dual-RF, dual-echo, 3D ultrashort echo time craniofacial imaging: a feasibility study. Magn Reson Med 81(5):3007–3016PubMedCrossRef Lee H, Zhao X, Song HK, Zhang R, Bartlett SP, Wehrli FW (2019) Rapid dual-RF, dual-echo, 3D ultrashort echo time craniofacial imaging: a feasibility study. Magn Reson Med 81(5):3007–3016PubMedCrossRef
6.
go back to reference Wiesinger F, Sacolick LI, Menini A, Kaushik SS, Ahn S, Veit-Haibach P, Delso G, Shanbhag DD (2016) Zero TE MR bone imaging in the head. Magn Reson Med 75(1):107–114PubMedCrossRef Wiesinger F, Sacolick LI, Menini A, Kaushik SS, Ahn S, Veit-Haibach P, Delso G, Shanbhag DD (2016) Zero TE MR bone imaging in the head. Magn Reson Med 75(1):107–114PubMedCrossRef
7.
go back to reference Eley KA, McIntyre AG, Watt-Smith SR, Golding SJ (2012) “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol 85(1011):272–278PubMedPubMedCentralCrossRef Eley KA, McIntyre AG, Watt-Smith SR, Golding SJ (2012) “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol 85(1011):272–278PubMedPubMedCentralCrossRef
8.
go back to reference Patel KB, Eldeniz C, Skolnick GB, Jammalamadaka U, Commean PK, Goyal MS, Smyth MD, An H (2020) 3D pediatric cranial bone imaging using high-resolution MRI for visualizing cranial sutures: a pilot study. J Neurosurg Pediatr 26(3):311–317PubMedPubMedCentralCrossRef Patel KB, Eldeniz C, Skolnick GB, Jammalamadaka U, Commean PK, Goyal MS, Smyth MD, An H (2020) 3D pediatric cranial bone imaging using high-resolution MRI for visualizing cranial sutures: a pilot study. J Neurosurg Pediatr 26(3):311–317PubMedPubMedCentralCrossRef
9.
go back to reference Eley KA, Watt-Smith SR, Sheerin F, Golding SJ (2014) “Black Bone” MRI: a potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis. Eur Radiol 24(10):2417–2426PubMedCrossRef Eley KA, Watt-Smith SR, Sheerin F, Golding SJ (2014) “Black Bone” MRI: a potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis. Eur Radiol 24(10):2417–2426PubMedCrossRef
10.
go back to reference Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27(6):825–846PubMedCrossRef Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27(6):825–846PubMedCrossRef
11.
go back to reference Reichert ILH, Robson MD, Gatehouse PD, He T, Chappell KE, Holmes J, Girgis S, Bydder GM (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23(5):611–618PubMedCrossRef Reichert ILH, Robson MD, Gatehouse PD, He T, Chappell KE, Holmes J, Girgis S, Bydder GM (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23(5):611–618PubMedCrossRef
12.
go back to reference Eley KA, Watt-Smith SR, Golding SJ (2012) “Black bone” MRI: a potential alternative to CT when imaging the head and neck: report of eight clinical cases and review of the Oxford experience. Br J Radiol 85(1019):1457–1464PubMedPubMedCentralCrossRef Eley KA, Watt-Smith SR, Golding SJ (2012) “Black bone” MRI: a potential alternative to CT when imaging the head and neck: report of eight clinical cases and review of the Oxford experience. Br J Radiol 85(1019):1457–1464PubMedPubMedCentralCrossRef
13.
go back to reference Saarikko A, Mellanen E, Kuusela L, Leikola J, Karppinen A, Autti T, Virtanen P, Brandstack N (2020) Comparison of black bone MRI and 3D-CT in the preoperative evaluation of patients with craniosynostosis. J Plast Reconstr Aesthet Surg 73(4):723–731PubMedCrossRef Saarikko A, Mellanen E, Kuusela L, Leikola J, Karppinen A, Autti T, Virtanen P, Brandstack N (2020) Comparison of black bone MRI and 3D-CT in the preoperative evaluation of patients with craniosynostosis. J Plast Reconstr Aesthet Surg 73(4):723–731PubMedCrossRef
14.
go back to reference Kuusela L, Hukki A, Brandstack N, Autti T, Leikola J, Saarikko A (2018) Use of black-bone MRI in the diagnosis of the patients with posterior plagiocephaly. Childs Nerv Syst 34(7):1383–1389PubMedCrossRef Kuusela L, Hukki A, Brandstack N, Autti T, Leikola J, Saarikko A (2018) Use of black-bone MRI in the diagnosis of the patients with posterior plagiocephaly. Childs Nerv Syst 34(7):1383–1389PubMedCrossRef
16.
go back to reference Johnson EM, Vyas U, Ghanouni P, Pauly KB, Pauly JM (2017) Improved cortical bone specificity in UTE MR imaging. Magn Reson Med 77(2):684–695PubMedCrossRef Johnson EM, Vyas U, Ghanouni P, Pauly KB, Pauly JM (2017) Improved cortical bone specificity in UTE MR imaging. Magn Reson Med 77(2):684–695PubMedCrossRef
18.
go back to reference Zhang R, Lee H, Zhao X, Song HK, Vossough A, Wehrli FW, Bartlett SP (2020) Bone-selective MRI as a nonradiative alternative to CT for craniofacial imaging. Acad Radiol 27(11):1515–1522PubMedPubMedCentralCrossRef Zhang R, Lee H, Zhao X, Song HK, Vossough A, Wehrli FW, Bartlett SP (2020) Bone-selective MRI as a nonradiative alternative to CT for craniofacial imaging. Acad Radiol 27(11):1515–1522PubMedPubMedCentralCrossRef
19.
go back to reference Delso G, Wiesinger F, Sacolick LI, Kaushik SS, Shanbhag DD, Hüllner M, Veit-Haibach P (2015) Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull. J Nucl Med 56(3):417–422PubMedCrossRef Delso G, Wiesinger F, Sacolick LI, Kaushik SS, Shanbhag DD, Hüllner M, Veit-Haibach P (2015) Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull. J Nucl Med 56(3):417–422PubMedCrossRef
20.
go back to reference Cho SB, Baek HJ, Ryu KH, Choi BH, Moon JI, Kim TB, Kim SK, Park H, Hwang MJ (2019) Clinical feasibility of zero TE skull MRI in patients with head trauma in comparison with CT: a single-center study. AJNR Am J Neuroradiol 40(1):109–115PubMedPubMedCentralCrossRef Cho SB, Baek HJ, Ryu KH, Choi BH, Moon JI, Kim TB, Kim SK, Park H, Hwang MJ (2019) Clinical feasibility of zero TE skull MRI in patients with head trauma in comparison with CT: a single-center study. AJNR Am J Neuroradiol 40(1):109–115PubMedPubMedCentralCrossRef
21.
22.
go back to reference Lee H, Zhao X, Song HK, Wehrli FW (2020) Self-navigated three-dimensional ultrashort echo time technique for motion-corrected skull MRI. IEEE Trans Med Imaging 39(9):2869–2880PubMedPubMedCentralCrossRef Lee H, Zhao X, Song HK, Wehrli FW (2020) Self-navigated three-dimensional ultrashort echo time technique for motion-corrected skull MRI. IEEE Trans Med Imaging 39(9):2869–2880PubMedPubMedCentralCrossRef
23.
go back to reference Song HK, Dougherty L (2000) k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 44(6):825–832PubMedCrossRef Song HK, Dougherty L (2000) k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 44(6):825–832PubMedCrossRef
24.
go back to reference Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67(2):510–518PubMedCrossRef Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67(2):510–518PubMedCrossRef
25.
go back to reference Li C, Magland JF, Seifert AC, Wehrli FW (2014) Correction of excitation profile in zero echo time (ZTE) imaging using quadratic phase-modulated RF pulse excitation and iterative reconstruction. IEEE Trans Med Imaging 33(4):961–969PubMedPubMedCentralCrossRef Li C, Magland JF, Seifert AC, Wehrli FW (2014) Correction of excitation profile in zero echo time (ZTE) imaging using quadratic phase-modulated RF pulse excitation and iterative reconstruction. IEEE Trans Med Imaging 33(4):961–969PubMedPubMedCentralCrossRef
26.
go back to reference Li C, Magland JF, Zhao X, Seifert AC, Wehrli FW (2017) Selective in vivo bone imaging with long-T(2) suppressed PETRA MRI. Magn Reson Med 77(3):989–997PubMedCrossRef Li C, Magland JF, Zhao X, Seifert AC, Wehrli FW (2017) Selective in vivo bone imaging with long-T(2) suppressed PETRA MRI. Magn Reson Med 77(3):989–997PubMedCrossRef
27.
go back to reference Herrmann K-H, Krämer M, Reichenbach JR (2016) Time efficient 3D radial UTE sampling with fully automatic delay compensation on a clinical 3T MR scanner. PLoS ONE 11(3):e0150371PubMedPubMedCentralCrossRef Herrmann K-H, Krämer M, Reichenbach JR (2016) Time efficient 3D radial UTE sampling with fully automatic delay compensation on a clinical 3T MR scanner. PLoS ONE 11(3):e0150371PubMedPubMedCentralCrossRef
28.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320PubMedPubMedCentralCrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320PubMedPubMedCentralCrossRef
29.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128PubMedCrossRef Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128PubMedCrossRef
30.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341PubMedPubMedCentralCrossRef Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341PubMedPubMedCentralCrossRef
31.
go back to reference Song HK, Wehrli FW, Ma J (1997) In vivo MR microscopy of the human skin. Magn Reson Med 37(2):185–191PubMedCrossRef Song HK, Wehrli FW, Ma J (1997) In vivo MR microscopy of the human skin. Magn Reson Med 37(2):185–191PubMedCrossRef
33.
go back to reference Du J, Chiang AJ-T, Chung CB, Statum S, Znamirowski R, Takahashi A, Bydder GM (2010) Orientational analysis of the Achilles tendon and enthesis using an ultrashort echo time spectroscopic imaging sequence. Magn Reson Imaging 28(2):178–184PubMedCrossRef Du J, Chiang AJ-T, Chung CB, Statum S, Znamirowski R, Takahashi A, Bydder GM (2010) Orientational analysis of the Achilles tendon and enthesis using an ultrashort echo time spectroscopic imaging sequence. Magn Reson Imaging 28(2):178–184PubMedCrossRef
35.
go back to reference Techawiboonwong A, Song HK, Magland JF, Saha PK, Wehrli FW (2005) Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging JMRI 22(5):647–655PubMedCrossRef Techawiboonwong A, Song HK, Magland JF, Saha PK, Wehrli FW (2005) Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging JMRI 22(5):647–655PubMedCrossRef
36.
go back to reference Wehrli FW, Perkins TG, Shimakawa A, Roberts F (1987) Chemical shift-induced amplitude modulations in images obtained with gradient refocusing. Magn Reson Imaging 5:157–158PubMedCrossRef Wehrli FW, Perkins TG, Shimakawa A, Roberts F (1987) Chemical shift-induced amplitude modulations in images obtained with gradient refocusing. Magn Reson Imaging 5:157–158PubMedCrossRef
37.
go back to reference Engström M, McKinnon G, Cozzini C, Wiesinger F (2020) In-phase zero TE musculoskeletal imaging. Magn Reson Med 83(1):195–202PubMedCrossRef Engström M, McKinnon G, Cozzini C, Wiesinger F (2020) In-phase zero TE musculoskeletal imaging. Magn Reson Med 83(1):195–202PubMedCrossRef
38.
go back to reference Froidevaux R, Weiger M, Brunner DO, Dietrich BE, Wilm BJ, Pruessmann KP (2018) Filling the dead-time gap in zero echo time MRI: principles compared. Magn Reson Med 79(4):2036–2045PubMedCrossRef Froidevaux R, Weiger M, Brunner DO, Dietrich BE, Wilm BJ, Pruessmann KP (2018) Filling the dead-time gap in zero echo time MRI: principles compared. Magn Reson Med 79(4):2036–2045PubMedCrossRef
39.
go back to reference Dremmen MHG, Wagner MW, Bosemani T, Tekes A, Agostino D, Day E, Soares BP, Huisman T (2017) Does the addition of a “Black Bone” sequence to a fast multisequence trauma MR protocol allow MRI to replace CT after traumatic brain injury in children? AJNR Am J Neuroradiol 38(11):2187–2192PubMedPubMedCentralCrossRef Dremmen MHG, Wagner MW, Bosemani T, Tekes A, Agostino D, Day E, Soares BP, Huisman T (2017) Does the addition of a “Black Bone” sequence to a fast multisequence trauma MR protocol allow MRI to replace CT after traumatic brain injury in children? AJNR Am J Neuroradiol 38(11):2187–2192PubMedPubMedCentralCrossRef
41.
go back to reference Kralik SF, Supakul N, Wu IC, Delso G, Radhakrishnan R, Ho CY, Eley KA (2019) Black bone MRI with 3D reconstruction for the detection of skull fractures in children with suspected abusive head trauma. Neuroradiology 61(1):81–87PubMedCrossRef Kralik SF, Supakul N, Wu IC, Delso G, Radhakrishnan R, Ho CY, Eley KA (2019) Black bone MRI with 3D reconstruction for the detection of skull fractures in children with suspected abusive head trauma. Neuroradiology 61(1):81–87PubMedCrossRef
42.
43.
go back to reference Eshraghi Boroojeni P, Chen Y, Commean PK, Eldeniz C, Skolnick GB, Merrill C, Patel KB, An H (2022) Deep-learning synthesized pseudo-CT for MR high-resolution pediatric cranial bone imaging (MR-HiPCB). Magn Reson Med 88(5):2285–2297PubMedCrossRef Eshraghi Boroojeni P, Chen Y, Commean PK, Eldeniz C, Skolnick GB, Merrill C, Patel KB, An H (2022) Deep-learning synthesized pseudo-CT for MR high-resolution pediatric cranial bone imaging (MR-HiPCB). Magn Reson Med 88(5):2285–2297PubMedCrossRef
44.
go back to reference Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708–2714PubMedCrossRef Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708–2714PubMedCrossRef
45.
go back to reference Zheng W, Kim JP, Kadbi M, Movsas B, Chetty IJ, Glide-Hurst CK (2015) Magnetic resonance-based automatic air segmentation for generation of synthetic computed tomography scans in the head region. Int J Radiat Oncol Biol Phys 93(3):497–506PubMedCrossRef Zheng W, Kim JP, Kadbi M, Movsas B, Chetty IJ, Glide-Hurst CK (2015) Magnetic resonance-based automatic air segmentation for generation of synthetic computed tomography scans in the head region. Int J Radiat Oncol Biol Phys 93(3):497–506PubMedCrossRef
Metadata
Title
Cranial bone imaging using ultrashort echo-time bone-selective MRI as an alternative to gradient-echo based “black-bone” techniques
Authors
Nada Kamona
Brandon C. Jones
Hyunyeol Lee
Hee Kwon Song
Chamith S. Rajapakse
Connor S. Wagner
Scott P. Bartlett
Felix W. Wehrli
Publication date
07-11-2023
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2024
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-023-01125-8

Other articles of this Issue 1/2024

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2024 Go to the issue