Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 4/2013

01-10-2013 | Original Article

Lidamycin up-regulates the expression of thymidine phosphorylase and enhances the effects of capecitabine on the growth and pulmonary metastases of murine breast carcinoma

Authors: Sheng-hua Zhang, Hao Zhang, Hong-wei He, Liang Li, Xing-qi Li, Yi-ping Zhang, Rong-guang Shao

Published in: Cancer Chemotherapy and Pharmacology | Issue 4/2013

Login to get access

Abstract

Purpose

Capecitabine (CAP), a prodrug, needs to be converted to 5-fluorouracil by several key enzymes, including thymidine phosphorylase (TP). To improve the therapeutic index, potentiation of antitumor activity of CAP is required. In this study, we explored whether lidamycin (LDM), an enediyne anticancer antibiotic, can induce synergistic antitumor effects in combination with CAP in murine breast cancer in vitro and in vivo.

Methods

Using MTT, cell migration and invasion, siRNA knockdown, and Western blot assays, the in vitro synergistic effects of LDM plus CAP on 4T1LUC cells were evaluated, and the mechanism of this synergy was explored. For in vivo model of orthotopic implantation model of 4T1LUC cells, optical molecular imaging system was utilized to evaluate the growth of primary tumor and metastasis. To further understand the mechanism of action of the LDM/CAP combination, immunohistochemistry analysis was carried out to detect thymidine phosphorylase induction and ERK signaling.

Results

As determined by MTT and transwell assay, LDM enhanced the inhibitory effects of CAP on cancer cell proliferation, migration, and invasion. Western blot showed that this synergistic effect was attributed to the up-regulated expression of TP induced by LDM. Knocking down TP impaired the synergistic anti-proliferative effect of LDM and CAP. Furthermore, our data suggested that LDM-induced up-regulation of TP both in vitro and in vivo is associated with ERK activation, because the inhibition of ERK activity by ERK inhibitor U0126 abrogated LDM-induced TP up-regulation. In animal models, LDM plus CAP potently inhibited primary tumor growth as well as lung metastasis compared with control or single-agent-treated group.

Conclusions

LDM can potentiate the antitumor effects of CAP on breast cancer line. The synergistic effects suggest that the combination of LDM and CAP is an innovative antitumor strategy for breast cancer therapy.
Literature
1.
go back to reference Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA: A Cancer Journal for Clinicians 63(1):11–30CrossRef Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA: A Cancer Journal for Clinicians 63(1):11–30CrossRef
2.
go back to reference Boyle P (2005) Breast cancer control: signs of progress, but more work required. Breast 14(6):429–438PubMedCrossRef Boyle P (2005) Breast cancer control: signs of progress, but more work required. Breast 14(6):429–438PubMedCrossRef
3.
go back to reference Demicheli R, Valagussa P, Bonadonna G (2001) Does surgery modify growth kinetics of breast cancer micrometastases? Br J Cancer 85(4):490–492PubMedCrossRef Demicheli R, Valagussa P, Bonadonna G (2001) Does surgery modify growth kinetics of breast cancer micrometastases? Br J Cancer 85(4):490–492PubMedCrossRef
4.
go back to reference Hansen E, Wolff N, Knuechel R, Ruschoff J, Hofstaedter F, Taeger K (1995) Tumor cells in blood shed from the surgical field. Arch Surg 130(4):387–393PubMedCrossRef Hansen E, Wolff N, Knuechel R, Ruschoff J, Hofstaedter F, Taeger K (1995) Tumor cells in blood shed from the surgical field. Arch Surg 130(4):387–393PubMedCrossRef
5.
go back to reference Hu JL, Xue YC, Xie MY, Zhang R, Otani T, Minami Y, Yamada Y, Marunaka T (1988) A new macromolecular antitumor antibiotic, C-1027. I. Discovery, taxonomy of producing organism, fermentation and biological activity. J Antibiot 41(11):1575–1579 TokyoPubMedCrossRef Hu JL, Xue YC, Xie MY, Zhang R, Otani T, Minami Y, Yamada Y, Marunaka T (1988) A new macromolecular antitumor antibiotic, C-1027. I. Discovery, taxonomy of producing organism, fermentation and biological activity. J Antibiot 41(11):1575–1579 TokyoPubMedCrossRef
6.
go back to reference Shao RG, Zhen YS (2008) Enediyne anticancer antibiotic lidamycin: chemistry, biology and pharmacology. Anticancer Agents Med Chem 8(2):123–131PubMedCrossRef Shao RG, Zhen YS (2008) Enediyne anticancer antibiotic lidamycin: chemistry, biology and pharmacology. Anticancer Agents Med Chem 8(2):123–131PubMedCrossRef
7.
go back to reference Shao RG (2008) Pharmacology and therapeutic applications of enediyne antitumor antibiotics. Curr Mol Pharmacol 1(1):50–60PubMed Shao RG (2008) Pharmacology and therapeutic applications of enediyne antitumor antibiotics. Curr Mol Pharmacol 1(1):50–60PubMed
8.
go back to reference Shao RG, Zhen YS (1995) Relationship between the molecular composition of C1027, a new macromolecular antibiotic with enediyne chromophore, and its antitumor activity. Yao Xue Xue Bao 30(5):336–342PubMed Shao RG, Zhen YS (1995) Relationship between the molecular composition of C1027, a new macromolecular antibiotic with enediyne chromophore, and its antitumor activity. Yao Xue Xue Bao 30(5):336–342PubMed
9.
go back to reference Dziegielewski J, Beerman TA (2002) Cellular responses to the DNA strand-scission enediyne C-1027 can be independent of ATM, ATR, and DNA-PK kinases. J Biol Chem 277(23):20549–20554PubMedCrossRef Dziegielewski J, Beerman TA (2002) Cellular responses to the DNA strand-scission enediyne C-1027 can be independent of ATM, ATR, and DNA-PK kinases. J Biol Chem 277(23):20549–20554PubMedCrossRef
10.
go back to reference Beerman TA, Gawron LS, Shin S, Shen B, McHugh MM (2009) C-1027, a radiomimetic enediyne anticancer drug, preferentially targets hypoxic cells. Cancer Res 69(2):593–598PubMedCrossRef Beerman TA, Gawron LS, Shin S, Shen B, McHugh MM (2009) C-1027, a radiomimetic enediyne anticancer drug, preferentially targets hypoxic cells. Cancer Res 69(2):593–598PubMedCrossRef
11.
go back to reference Chen L, Jiang J, Cheng C, Yang A, He Q, Li D, Wang Z (2007) P53 dependent and independent apoptosis induced by lidamycin in human colorectal cancer cells. Cancer Biol Ther 6(6):965–973PubMedCrossRef Chen L, Jiang J, Cheng C, Yang A, He Q, Li D, Wang Z (2007) P53 dependent and independent apoptosis induced by lidamycin in human colorectal cancer cells. Cancer Biol Ther 6(6):965–973PubMedCrossRef
12.
go back to reference Liu H, Li L, Li XQ, Liu XJ, Zhen YS (2009) Enediyne lidamycin enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib, in epidermoid carcinoma A431 cells and lung carcinoma H460 cells. Anticancer Drugs 20(1):41–49PubMedCrossRef Liu H, Li L, Li XQ, Liu XJ, Zhen YS (2009) Enediyne lidamycin enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib, in epidermoid carcinoma A431 cells and lung carcinoma H460 cells. Anticancer Drugs 20(1):41–49PubMedCrossRef
13.
go back to reference Ding LL, Liu M, Zhang SH, Zhao XZ, Wu N, Chen L, Wang GJ, Lin XK (2010) Lidamycin inhibits angiogenesis of zebrafish embryo via down-regulation of VEGF. Yao Xue Xue Bao 45(4):456–461PubMed Ding LL, Liu M, Zhang SH, Zhao XZ, Wu N, Chen L, Wang GJ, Lin XK (2010) Lidamycin inhibits angiogenesis of zebrafish embryo via down-regulation of VEGF. Yao Xue Xue Bao 45(4):456–461PubMed
14.
go back to reference Esteva FJ, Valero V, Pusztai L, Boehnke-Michaud L, Buzdar AU, Hortobagyi GN (2001) Chemotherapy of metastatic breast cancer: what to expect in 2001 and beyond. Oncologist 6(2):133–146PubMedCrossRef Esteva FJ, Valero V, Pusztai L, Boehnke-Michaud L, Buzdar AU, Hortobagyi GN (2001) Chemotherapy of metastatic breast cancer: what to expect in 2001 and beyond. Oncologist 6(2):133–146PubMedCrossRef
15.
go back to reference Bollag W, Hartmann HR (1980) Tumor inhibitory effects of a new fluorouracil derivative: 5′-deoxy-5-fluorouridine. Eur J Cancer 16(4):427–432PubMedCrossRef Bollag W, Hartmann HR (1980) Tumor inhibitory effects of a new fluorouracil derivative: 5′-deoxy-5-fluorouridine. Eur J Cancer 16(4):427–432PubMedCrossRef
17.
go back to reference Zimmerman M (1964) Deoxyribosyl Transfer. Ii. Nucleoside:pyrimidine deoxyribosyltransferase activity of three partially purified thymidine phosphorylases. J Biol Chem 239:2622–2627PubMed Zimmerman M (1964) Deoxyribosyl Transfer. Ii. Nucleoside:pyrimidine deoxyribosyltransferase activity of three partially purified thymidine phosphorylases. J Biol Chem 239:2622–2627PubMed
18.
go back to reference Sawada N, Ishikawa T, Sekiguchi F, Tanaka Y, Ishitsuka H (1999) X-ray irradiation induces thymidine phosphorylase and enhances the efficacy of capecitabine (Xeloda) in human cancer xenografts. Clin Cancer Res 5(10):2948–2953PubMed Sawada N, Ishikawa T, Sekiguchi F, Tanaka Y, Ishitsuka H (1999) X-ray irradiation induces thymidine phosphorylase and enhances the efficacy of capecitabine (Xeloda) in human cancer xenografts. Clin Cancer Res 5(10):2948–2953PubMed
19.
go back to reference Morita T, Matsuzaki A, Tokue A (2001) Enhancement of sensitivity to capecitabine in human renal carcinoma cells transfected with thymidine phosphorylase cDNA. Int J Cancer 92(3):451–456PubMedCrossRef Morita T, Matsuzaki A, Tokue A (2001) Enhancement of sensitivity to capecitabine in human renal carcinoma cells transfected with thymidine phosphorylase cDNA. Int J Cancer 92(3):451–456PubMedCrossRef
20.
go back to reference Sawada N, Ishikawa T, Fukase Y, Nishida M, Yoshikubo T, Ishitsuka H (1998) Induction of thymidine phosphorylase activity and enhancement of capecitabine efficacy by taxol/taxotere in human cancer xenografts. Clin Cancer Res 4(4):1013–1019PubMed Sawada N, Ishikawa T, Fukase Y, Nishida M, Yoshikubo T, Ishitsuka H (1998) Induction of thymidine phosphorylase activity and enhancement of capecitabine efficacy by taxol/taxotere in human cancer xenografts. Clin Cancer Res 4(4):1013–1019PubMed
21.
go back to reference Ciccolini J, Fina F, Bezulier K, Giacometti S, Roussel M, Evrard A, Cuq P, Romain S, Martin PM, Aubert C (2002) Transmission of apoptosis in human colorectal tumor cells exposed to capecitabine, Xeloda, is mediated via Fas. Mol Cancer Ther 1:923–927PubMed Ciccolini J, Fina F, Bezulier K, Giacometti S, Roussel M, Evrard A, Cuq P, Romain S, Martin PM, Aubert C (2002) Transmission of apoptosis in human colorectal tumor cells exposed to capecitabine, Xeloda, is mediated via Fas. Mol Cancer Ther 1:923–927PubMed
22.
go back to reference Chefrour M, Fischel JL, Formento P, Giacometti S, Ferri-Dessens RM, Marouani H, Francoual M, Renee N, Mercier C, Milano G, Ciccolini J (2010) Erlotinib in combination with capecitabine (5′dFUR) in resistant pancreatic cancer cell lines. J Chemother 22:129–133PubMed Chefrour M, Fischel JL, Formento P, Giacometti S, Ferri-Dessens RM, Marouani H, Francoual M, Renee N, Mercier C, Milano G, Ciccolini J (2010) Erlotinib in combination with capecitabine (5′dFUR) in resistant pancreatic cancer cell lines. J Chemother 22:129–133PubMed
23.
go back to reference Chefrour M, Milano G, Formento P, Giacometti S, Denden A, Renée N, Iliadis A, Fischel J-L, Ciccolini J (2012) Positive interaction between lapatinib and capecitabine in human breast cancer models: study of molecular determinants. Fundam Clin Pharmacol 26:530–537PubMedCrossRef Chefrour M, Milano G, Formento P, Giacometti S, Denden A, Renée N, Iliadis A, Fischel J-L, Ciccolini J (2012) Positive interaction between lapatinib and capecitabine in human breast cancer models: study of molecular determinants. Fundam Clin Pharmacol 26:530–537PubMedCrossRef
24.
go back to reference Fujimoto-Ouchi K, Tanaka Y, Tominaga T (2001) Schedule dependency of antitumor activity in combination therapy with capecitabine/5′-deoxy-5-fluorouridine and docetaxel in breast cancer models. Clin Cancer Res 7(4):1079–1086PubMed Fujimoto-Ouchi K, Tanaka Y, Tominaga T (2001) Schedule dependency of antitumor activity in combination therapy with capecitabine/5′-deoxy-5-fluorouridine and docetaxel in breast cancer models. Clin Cancer Res 7(4):1079–1086PubMed
25.
go back to reference Gong JH, Liu XJ, Li Y, Zhen YS (2012) Pingyangmycin downregulates the expression of EGFR and enhances the effects of cetuximab on esophageal cancer cells and the xenograft in athymic mice. Cancer Chemoth Pharm 69:1323–1332CrossRef Gong JH, Liu XJ, Li Y, Zhen YS (2012) Pingyangmycin downregulates the expression of EGFR and enhances the effects of cetuximab on esophageal cancer cells and the xenograft in athymic mice. Cancer Chemoth Pharm 69:1323–1332CrossRef
26.
go back to reference Ren K, Jin H, Bian C, He H, Liu X, Zhang S, Wang Y, Shao RG (2008) MR-1 modulates proliferation and migration of human hepatoma HepG2 cells through myosin light chains-2 (MLC2)/focal adhesion kinase (FAK)/Akt signaling pathway. J Biol Chem 283(51):35598–35605PubMedCrossRef Ren K, Jin H, Bian C, He H, Liu X, Zhang S, Wang Y, Shao RG (2008) MR-1 modulates proliferation and migration of human hepatoma HepG2 cells through myosin light chains-2 (MLC2)/focal adhesion kinase (FAK)/Akt signaling pathway. J Biol Chem 283(51):35598–35605PubMedCrossRef
27.
go back to reference Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 40(6):852–857PubMedCrossRef Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 40(6):852–857PubMedCrossRef
28.
go back to reference Eccles SA, Box G, Court W, Sandle J, Dean CJ (1994) Preclinical models for the evaluation of targeted therapies of metastatic disease. Cell Biophys 24–25:279–291PubMed Eccles SA, Box G, Court W, Sandle J, Dean CJ (1994) Preclinical models for the evaluation of targeted therapies of metastatic disease. Cell Biophys 24–25:279–291PubMed
29.
go back to reference Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17(4):343–359PubMedCrossRef Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17(4):343–359PubMedCrossRef
30.
go back to reference Vernon AE, Bakewell SJ, Chodosh LA (2007) Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord 8(3):199–213PubMedCrossRef Vernon AE, Bakewell SJ, Chodosh LA (2007) Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord 8(3):199–213PubMedCrossRef
31.
go back to reference Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL, Tavaria MD, Stanley KL, Sloan EK, Moseley JM, Anderson RL (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3(1):1–13PubMed Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL, Tavaria MD, Stanley KL, Sloan EK, Moseley JM, Anderson RL (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3(1):1–13PubMed
32.
go back to reference Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T (2000) Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer 88(12 Suppl):2979–2988PubMedCrossRef Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T (2000) Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer 88(12 Suppl):2979–2988PubMedCrossRef
33.
go back to reference Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405PubMed Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405PubMed
34.
go back to reference Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17(2):163–170PubMedCrossRef Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17(2):163–170PubMedCrossRef
35.
go back to reference Blum JL, Jones SE, Buzdar AU, LoRusso PM, Kuter I, Vogel C, Osterwalder B, Burger HU, Brown CS, Griffin T (1999) Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 17(2):485–493PubMed Blum JL, Jones SE, Buzdar AU, LoRusso PM, Kuter I, Vogel C, Osterwalder B, Burger HU, Brown CS, Griffin T (1999) Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 17(2):485–493PubMed
36.
go back to reference Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, Shimma N, Umeda I, Ishitsuka H (1998) Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer 34(8):1274–1281PubMedCrossRef Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, Shimma N, Umeda I, Ishitsuka H (1998) Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer 34(8):1274–1281PubMedCrossRef
37.
go back to reference Schuller J, Cassidy J, Dumont E, Roos B, Durston S, Banken L, Utoh M, Mori K, Weidekamm E, Reigner B (2000) Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol 45(4):291–297PubMedCrossRef Schuller J, Cassidy J, Dumont E, Roos B, Durston S, Banken L, Utoh M, Mori K, Weidekamm E, Reigner B (2000) Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol 45(4):291–297PubMedCrossRef
38.
go back to reference Bijnsdorp IV, de Bruin M, Laan AC, Fukushima M, Peters GJ (2008) The role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in tumor behavior. Nucleosides, Nucleotides Nucleic Acids 27(6):681–691PubMedCrossRef Bijnsdorp IV, de Bruin M, Laan AC, Fukushima M, Peters GJ (2008) The role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in tumor behavior. Nucleosides, Nucleotides Nucleic Acids 27(6):681–691PubMedCrossRef
39.
go back to reference Ko JC, Tsai MS, Chiu YF, Weng SH, Kuo YH, Lin YW (2011) Up-regulation of extracellular signal-regulated kinase 1/2-dependent thymidylate synthase and thymidine phosphorylase contributes to cisplatin resistance in human non-small-cell lung cancer cells. J Pharmacol Exp Ther 338(1):184–194PubMedCrossRef Ko JC, Tsai MS, Chiu YF, Weng SH, Kuo YH, Lin YW (2011) Up-regulation of extracellular signal-regulated kinase 1/2-dependent thymidylate synthase and thymidine phosphorylase contributes to cisplatin resistance in human non-small-cell lung cancer cells. J Pharmacol Exp Ther 338(1):184–194PubMedCrossRef
40.
go back to reference Liekens S, Bronckaers A, Perez–Perez MJ, Balzarini J (2007) Targeting platelet-derived endothelial cell growth factor/thymidine phosphorylase for cancer therapy. Biochem Pharmacol 74(11):1555–1567PubMedCrossRef Liekens S, Bronckaers A, Perez–Perez MJ, Balzarini J (2007) Targeting platelet-derived endothelial cell growth factor/thymidine phosphorylase for cancer therapy. Biochem Pharmacol 74(11):1555–1567PubMedCrossRef
41.
go back to reference Chen J, Ouyang ZG, Zhang SH, Zhen YS (2007) Down-regulation of the nuclear factor-kappaB by lidamycin in association with inducing apoptosis in human pancreatic cancer cells and inhibiting xenograft growth. Oncol Rep 17(6):1445–1451PubMed Chen J, Ouyang ZG, Zhang SH, Zhen YS (2007) Down-regulation of the nuclear factor-kappaB by lidamycin in association with inducing apoptosis in human pancreatic cancer cells and inhibiting xenograft growth. Oncol Rep 17(6):1445–1451PubMed
42.
go back to reference Huang YH, Shang BY, Zhen YS (2005) Antitumor efficacy of lidamycin on hepatoma and active moiety of its molecule. World J Gastroenterol 11(26):3980–3984PubMed Huang YH, Shang BY, Zhen YS (2005) Antitumor efficacy of lidamycin on hepatoma and active moiety of its molecule. World J Gastroenterol 11(26):3980–3984PubMed
43.
go back to reference Eda H, Fujimoto K, Watanabe S, Ura M, Hino A, Tanaka Y, Wada K, Ishitsuka H (1993) Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 5′-deoxy-5-fluorouridine. Cancer Chemother Pharmacol 32(5):333–338PubMedCrossRef Eda H, Fujimoto K, Watanabe S, Ura M, Hino A, Tanaka Y, Wada K, Ishitsuka H (1993) Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 5′-deoxy-5-fluorouridine. Cancer Chemother Pharmacol 32(5):333–338PubMedCrossRef
44.
go back to reference Eda H, Fujimoto K, Watanabe S, Ishikawa T, Ohiwa T, Tatsuno K, Tanaka Y, Ishitsuka H (1993) Cytokines induce uridine phosphorylase in mouse colon 26 carcinoma cells and make the cells more susceptible to 5′-deoxy-5-fluorouridine. Jpn J Cancer Res 84(3):341–347PubMedCrossRef Eda H, Fujimoto K, Watanabe S, Ishikawa T, Ohiwa T, Tatsuno K, Tanaka Y, Ishitsuka H (1993) Cytokines induce uridine phosphorylase in mouse colon 26 carcinoma cells and make the cells more susceptible to 5′-deoxy-5-fluorouridine. Jpn J Cancer Res 84(3):341–347PubMedCrossRef
45.
go back to reference Tevaearai HT, Laurent PL, Suardet L, Eliason JF, Givel JC, Odartchenko N (1992) Interactions of interferon-alpha 2a with 5′-deoxy-5-fluorouridine in colorectal cancer cells in vitro. Eur J Cancer 28(2–3):368–372PubMedCrossRef Tevaearai HT, Laurent PL, Suardet L, Eliason JF, Givel JC, Odartchenko N (1992) Interactions of interferon-alpha 2a with 5′-deoxy-5-fluorouridine in colorectal cancer cells in vitro. Eur J Cancer 28(2–3):368–372PubMedCrossRef
46.
go back to reference Zhu GH, Lenzi M, Schwartz EL (2002) The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells. Oncogene 21(55):8477–8485PubMedCrossRef Zhu GH, Lenzi M, Schwartz EL (2002) The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells. Oncogene 21(55):8477–8485PubMedCrossRef
Metadata
Title
Lidamycin up-regulates the expression of thymidine phosphorylase and enhances the effects of capecitabine on the growth and pulmonary metastases of murine breast carcinoma
Authors
Sheng-hua Zhang
Hao Zhang
Hong-wei He
Liang Li
Xing-qi Li
Yi-ping Zhang
Rong-guang Shao
Publication date
01-10-2013
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 4/2013
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-013-2253-3

Other articles of this Issue 4/2013

Cancer Chemotherapy and Pharmacology 4/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine