Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2020

Open Access 01-12-2020 | Research

Leu124Serfs*26, a novel AGPAT2 mutation in congenital generalized lipodystrophy with early cardiovascular complications

Authors: Renan Magalhães Montenegro Junior, Grayce Ellen da Cruz Paiva Lima, Virgínia Oliveira Fernandes, Ana Paula Dias Rangel Montenegro, Clarisse Mourão Melo Ponte, Lívia Vasconcelos Martins, Daniel Pascoalino Pinheiro, Maria Elisabete Amaral de Moraes, Manoel Odorico de Moraes Filho, Catarina Brasil d’Alva

Published in: Diabetology & Metabolic Syndrome | Issue 1/2020

Login to get access

Abstract

Background

Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder characterized by the near-total loss of subcutaneous adipose tissue soon after birth, resulting in ectopic fat deposition and severe metabolic disturbances. Most cases are caused by AGPAT2 or BSCL2 gene mutations. We aimed to report two unrelated CGL patients with a novel frameshift mutation in AGPAT2 (p.Leu124Serfs*26).

Methods

Clinical features and laboratory were obtained by medical interview and medical records review. DNA was extracted, amplified and sequenced. Mutation Taster was used to estimate the potential biological impact of the AGPAT2 mutations on the protein function.

Results

Patient 1: a 30-year-old woman with lipodystrophy phenotype at birth and diagnosis of diabetes at age 13 presented with severe hypertriglyceridemia and pancreatitis at age 17, hypertension and albuminuria at age 18, proliferative diabetic retinopathy with visual loss at age 25, and an acute myocardial infarction due to multivessel coronary disease during a hospitalization for forefoot amputation at age 29. At this time, she required hemodialysis due to end-stage renal disease. Patient 2: a 12-year-old girl with lipodystrophy phenotype and hypertriglyceridemia detected in the first year of life and abnormalities in the global longitudinal strain, evaluated by speckle-tracking echocardiography last year. Molecular analysis identified a c.369_372delGCTC (p.Leu124Serfs*26) AGPAT2 mutation in both unrelated patients, a compound heterozygous mutation in Patient 1, and homozygous mutation in Patient 2.

Conclusion

We describe two unrelated patients with type 1 CGL due to Leu124Serfs*26, a novel AGPAT2 frameshift mutation, presenting as early cardiovascular disease. These findings suggest an association between Leu124Serfs*26 and a more aggressive phenotype.
Literature
1.
go back to reference Van Maldergem L, Magre J, Khallouf TE, Gedde-Dahl T, Delepine M, Trygstad O, et al. Genotype-phenotype relationships in Berardinelli–Seip congenital lipodystrophy. J Med Genet. 2002;39(10):722–33.CrossRef Van Maldergem L, Magre J, Khallouf TE, Gedde-Dahl T, Delepine M, Trygstad O, et al. Genotype-phenotype relationships in Berardinelli–Seip congenital lipodystrophy. J Med Genet. 2002;39(10):722–33.CrossRef
2.
go back to reference Gomes KB, Fernandes AP, Ferreira ACS, Pardini H, Garg A, Magré J, et al. Mutations in the seipin and AGPAT2 genes clustering in consanguineous families with Berardinelli–Seip congenital lipodystrophy from two separate geographical regions of Brazil. J Clin Endocrinol Metab. 2004;89(1):357–61.CrossRef Gomes KB, Fernandes AP, Ferreira ACS, Pardini H, Garg A, Magré J, et al. Mutations in the seipin and AGPAT2 genes clustering in consanguineous families with Berardinelli–Seip congenital lipodystrophy from two separate geographical regions of Brazil. J Clin Endocrinol Metab. 2004;89(1):357–61.CrossRef
3.
go back to reference Pardini VC, Victória IMN, Rocha SMV, Andrade DG, Rocha AM, Pieroni FB, et al. Leptin levels, β-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatropic diabetes. J Clin Endocrinol Metab. 1998;83(2):503–8.PubMed Pardini VC, Victória IMN, Rocha SMV, Andrade DG, Rocha AM, Pieroni FB, et al. Leptin levels, β-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatropic diabetes. J Clin Endocrinol Metab. 1998;83(2):503–8.PubMed
4.
go back to reference Agarwal AK, Arioglu E, de Almeida S, Akkoc N, Taylor SI, Bowcock AM, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21.CrossRef Agarwal AK, Arioglu E, de Almeida S, Akkoc N, Taylor SI, Bowcock AM, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21.CrossRef
5.
go back to reference Garg A. Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96(11):3313–25.CrossRef Garg A. Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96(11):3313–25.CrossRef
6.
go back to reference Shindou H, Hishikawa D, Harayama T, Yuki K, Shimizu T. Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res. 2009;50(Supplement):S46–51.CrossRef Shindou H, Hishikawa D, Harayama T, Yuki K, Shimizu T. Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res. 2009;50(Supplement):S46–51.CrossRef
8.
go back to reference Gale SE, Frolov A, Han X, Bickel PE, Cao L, Bowcock A, et al. A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J Biol Chem. 2006;281(16):11082–9.CrossRef Gale SE, Frolov A, Han X, Bickel PE, Cao L, Bowcock A, et al. A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J Biol Chem. 2006;281(16):11082–9.CrossRef
9.
go back to reference Cortés VA, Curtis DE, Sukumaran S, Shao X, Parameswara V, Rashid S, et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 2009;9(2):165–76.CrossRef Cortés VA, Curtis DE, Sukumaran S, Shao X, Parameswara V, Rashid S, et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 2009;9(2):165–76.CrossRef
10.
go back to reference Agarwal AK. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr Opin Lipidol. 2012;23(4):290–302.CrossRef Agarwal AK. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr Opin Lipidol. 2012;23(4):290–302.CrossRef
11.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRef
12.
go back to reference Miller SA, Dykes DD, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.CrossRef Miller SA, Dykes DD, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.CrossRef
13.
go back to reference Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.CrossRef Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.CrossRef
14.
go back to reference Ponte CMM, Fernandes VO, Gurgel MHC, Vasconcelos ITGF, Karbage LBAS, Liberato CBR, et al. Early commitment of cardiovascular autonomic modulation in Brazilian patients with congenital generalized lipodystrophy. BMC Cardiovasc Disord. 2018;18(1):6.CrossRef Ponte CMM, Fernandes VO, Gurgel MHC, Vasconcelos ITGF, Karbage LBAS, Liberato CBR, et al. Early commitment of cardiovascular autonomic modulation in Brazilian patients with congenital generalized lipodystrophy. BMC Cardiovasc Disord. 2018;18(1):6.CrossRef
15.
go back to reference Leung DW. The structure and functions of human lysophosphatidic acid acyltransferases. Front Biosci. 2001;6(1):D944–53.CrossRef Leung DW. The structure and functions of human lysophosphatidic acid acyltransferases. Front Biosci. 2001;6(1):D944–53.CrossRef
16.
go back to reference Li D, Yu L, Wu H, Shan Y, Guo J, Dang Y, et al. Cloning and identification of the human LPAAT-zeta gene, a novel member of the lysophosphatidic acid acyltransferase family. J Hum Genet. 2003;48(8):438.CrossRef Li D, Yu L, Wu H, Shan Y, Guo J, Dang Y, et al. Cloning and identification of the human LPAAT-zeta gene, a novel member of the lysophosphatidic acid acyltransferase family. J Hum Genet. 2003;48(8):438.CrossRef
17.
go back to reference Sarmento ASC, Ferreira LC, de Lima JG, de Azevedo Medeiros LB, Cunha PTB, Agnez-Lima LF, et al. The worldwide mutational landscape of Berardinelli-Seip congenital lipodystrophy. Mutat Res Mutat Res. 2019;781:30–52.CrossRef Sarmento ASC, Ferreira LC, de Lima JG, de Azevedo Medeiros LB, Cunha PTB, Agnez-Lima LF, et al. The worldwide mutational landscape of Berardinelli-Seip congenital lipodystrophy. Mutat Res Mutat Res. 2019;781:30–52.CrossRef
18.
go back to reference Fu M, Kazlauskaite R, Paiva Baracho MF, Nascimento Santos MGD, Brandão-Neto J, Villares S, et al. Mutations in Gng3lg and AGPAT2 in Berardinelli-Seip congenital lipodystrophy and Brunzell syndrome: phenotype variability suggests important modifier effects. J Clin Endocrinol Metab. 2004;89(6):2916–22.CrossRef Fu M, Kazlauskaite R, Paiva Baracho MF, Nascimento Santos MGD, Brandão-Neto J, Villares S, et al. Mutations in Gng3lg and AGPAT2 in Berardinelli-Seip congenital lipodystrophy and Brunzell syndrome: phenotype variability suggests important modifier effects. J Clin Endocrinol Metab. 2004;89(6):2916–22.CrossRef
19.
go back to reference Lima JG, Nobrega LHC, De Lima NN, Goretti M, Baracho MFP, Maria S, et al. Clinical and laboratory data of a large series of patients with congenital generalized lipodystrophy. Diabetol Metab Syndr. 2016;8:1–7.CrossRef Lima JG, Nobrega LHC, De Lima NN, Goretti M, Baracho MFP, Maria S, et al. Clinical and laboratory data of a large series of patients with congenital generalized lipodystrophy. Diabetol Metab Syndr. 2016;8:1–7.CrossRef
20.
go back to reference Agarwal AK, Simha V, Oral EA, Moran SA, Gorden P, O’rahilly S, et al. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 2003;88(10):4840–7.CrossRef Agarwal AK, Simha V, Oral EA, Moran SA, Gorden P, O’rahilly S, et al. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 2003;88(10):4840–7.CrossRef
21.
go back to reference Hussain I, Patni N, Garg A. Lipodystrophies, dyslipidaemias and atherosclerotic cardiovascular disease. Pathology. 2018;51(2):202–12.CrossRef Hussain I, Patni N, Garg A. Lipodystrophies, dyslipidaemias and atherosclerotic cardiovascular disease. Pathology. 2018;51(2):202–12.CrossRef
22.
go back to reference Lupsa BC, Sachdev V, Lungu AO, Rosing DR, Gorden P. Cardiomyopathy in congenital and acquired generalized lipodystrophy: a clinical assessment. Medicine. 2010;89(4):245.CrossRef Lupsa BC, Sachdev V, Lungu AO, Rosing DR, Gorden P. Cardiomyopathy in congenital and acquired generalized lipodystrophy: a clinical assessment. Medicine. 2010;89(4):245.CrossRef
23.
go back to reference Akinci B, Onay H, Demir T, Ozen S, Kayserili H, Akinci G, et al. Natural history of congenital generalized lipodystrophy: a nationwide study from Turkey. J Clin Endocrinol Metab. 2016;101(7):2759–67.CrossRef Akinci B, Onay H, Demir T, Ozen S, Kayserili H, Akinci G, et al. Natural history of congenital generalized lipodystrophy: a nationwide study from Turkey. J Clin Endocrinol Metab. 2016;101(7):2759–67.CrossRef
24.
go back to reference Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47(4):789–93.CrossRef Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47(4):789–93.CrossRef
25.
go back to reference Liberato CBR, Olegario NBC, Fernandes VO, Montenegro APDR, Lima GECP, Batista LAA, Martins LV, Penaforte-Saboia JG, Liberato ILRB, Lope LF, d’Alva CB, Furtado FLB, Lima RLM, Nóbreg LHC, Lima JG, MonteneroJunior R. Early left ventricular systolic dysfunction detected by two-dimensional speckle-tracking echocardiography in young patients with congenital generalized lipodystrophy. Diabetes, Metab Syndr Obes Targets Ther. 2020;13:107–15.CrossRef Liberato CBR, Olegario NBC, Fernandes VO, Montenegro APDR, Lima GECP, Batista LAA, Martins LV, Penaforte-Saboia JG, Liberato ILRB, Lope LF, d’Alva CB, Furtado FLB, Lima RLM, Nóbreg LHC, Lima JG, MonteneroJunior R. Early left ventricular systolic dysfunction detected by two-dimensional speckle-tracking echocardiography in young patients with congenital generalized lipodystrophy. Diabetes, Metab Syndr Obes Targets Ther. 2020;13:107–15.CrossRef
26.
go back to reference Haghighi A, Razzaghy-Azar M, Talea A, Sadeghian M, Ellard S, Haghighi A. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1. Eur J Med Genet. 2012;55(11):620–4.CrossRef Haghighi A, Razzaghy-Azar M, Talea A, Sadeghian M, Ellard S, Haghighi A. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1. Eur J Med Genet. 2012;55(11):620–4.CrossRef
27.
go back to reference Taylor EN, Curhan GC. Body size and 24-hour urine composition. Am J Kidney Dis. 2006;48(6):905–15.CrossRef Taylor EN, Curhan GC. Body size and 24-hour urine composition. Am J Kidney Dis. 2006;48(6):905–15.CrossRef
28.
go back to reference Pak CYC, Sakhaee K, Moe O, Preminger GM, Poindexter JR, Peterson RD, et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 2003;61(3):523–7.CrossRef Pak CYC, Sakhaee K, Moe O, Preminger GM, Poindexter JR, Peterson RD, et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 2003;61(3):523–7.CrossRef
29.
go back to reference Abate N, Chandalia M, Cabo-Chan AV Jr, Moe OW, Sakhaee K. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int. 2004;65(2):386–92.CrossRef Abate N, Chandalia M, Cabo-Chan AV Jr, Moe OW, Sakhaee K. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int. 2004;65(2):386–92.CrossRef
30.
go back to reference Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res. 2006;34(3):193.CrossRef Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res. 2006;34(3):193.CrossRef
31.
go back to reference Duran AO, Anil C, Gursoy A, Inanc M, Bozkurt O, Tutuncu NB. Thyroid volume in patients with glucose metabolism disorders. 2014;58(8):824–7. Duran AO, Anil C, Gursoy A, Inanc M, Bozkurt O, Tutuncu NB. Thyroid volume in patients with glucose metabolism disorders. 2014;58(8):824–7.
32.
go back to reference Rezzonico J, Rezzonico M, Pusiol E. Introducing the thyroid gland as another victim of the insulin resistance syndrome. Thyroid. 2008;18(4):461–4.CrossRef Rezzonico J, Rezzonico M, Pusiol E. Introducing the thyroid gland as another victim of the insulin resistance syndrome. Thyroid. 2008;18(4):461–4.CrossRef
33.
go back to reference Ayturk S, Gursoy A, Kut A, Anil C, Nar A, Tutuncu NB. Metabolic syndrome and its components are associated with increased thyroid volume and nodule prevalence in a mild-to-moderate iodine-deficient area. Eur J Endocrinol. 2009;161:599–605.CrossRef Ayturk S, Gursoy A, Kut A, Anil C, Nar A, Tutuncu NB. Metabolic syndrome and its components are associated with increased thyroid volume and nodule prevalence in a mild-to-moderate iodine-deficient area. Eur J Endocrinol. 2009;161:599–605.CrossRef
34.
go back to reference Upreti V, Dhull P, Patnaik SK, Kumar KVSH. An unusual cause of delayed puberty: Berardinelli–Seip syndrome. J Pediatr Endocrinol Metab. 2012;25(11–12):1157–60.PubMed Upreti V, Dhull P, Patnaik SK, Kumar KVSH. An unusual cause of delayed puberty: Berardinelli–Seip syndrome. J Pediatr Endocrinol Metab. 2012;25(11–12):1157–60.PubMed
35.
go back to reference Musso C, Cochran E, Javor E, Young J, DePaoli AM, Gorden P. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypoleptinemic lipodystrophic patients. Metabolism. 2005;54(2):255–63.CrossRef Musso C, Cochran E, Javor E, Young J, DePaoli AM, Gorden P. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypoleptinemic lipodystrophic patients. Metabolism. 2005;54(2):255–63.CrossRef
36.
go back to reference Maguire M, Lungu A, Gorden P, Cochran E, Stratton P. Pregnancy in a woman with congenital generalized lipodystrophy: leptin’s vital role in reproduction. Obstet Gynecol. 2012;119(2 Pt 2):452.CrossRef Maguire M, Lungu A, Gorden P, Cochran E, Stratton P. Pregnancy in a woman with congenital generalized lipodystrophy: leptin’s vital role in reproduction. Obstet Gynecol. 2012;119(2 Pt 2):452.CrossRef
Metadata
Title
Leu124Serfs*26, a novel AGPAT2 mutation in congenital generalized lipodystrophy with early cardiovascular complications
Authors
Renan Magalhães Montenegro Junior
Grayce Ellen da Cruz Paiva Lima
Virgínia Oliveira Fernandes
Ana Paula Dias Rangel Montenegro
Clarisse Mourão Melo Ponte
Lívia Vasconcelos Martins
Daniel Pascoalino Pinheiro
Maria Elisabete Amaral de Moraes
Manoel Odorico de Moraes Filho
Catarina Brasil d’Alva
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2020
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-020-00538-y

Other articles of this Issue 1/2020

Diabetology & Metabolic Syndrome 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine