Skip to main content
Top
Published in: Respiratory Research 1/2008

Open Access 01-12-2008 | Research

Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone

Authors: Makoto Furugen, Futoshi Higa, Kenji Hibiya, Hiromitsu Teruya, Morikazu Akamine, Shusaku Haranaga, Satomi Yara, Michio Koide, Masao Tateyama, Naoki Mori, Jiro Fujita

Published in: Respiratory Research | Issue 1/2008

Login to get access

Abstract

Background

Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells.

Methods

Nuclear deoxyribonucleic acid (DNA) fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP)-biotin nick end labeling method (TUNEL method) and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila.

Results

The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining) and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1) protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM) did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells.

Conclusion

Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a major virulence factor of L. pneumophila, is involved in the effects we measured in alveolar epithelial cells. Methyl prednisolone may modulate the interaction of Legionella and these cells.
Literature
2.
go back to reference Horwitz MA: The Legionnaires' disease bacterium ( Legionella pneumophila ) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 1983, 158:2108–2126.CrossRefPubMed Horwitz MA: The Legionnaires' disease bacterium ( Legionella pneumophila ) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 1983, 158:2108–2126.CrossRefPubMed
3.
go back to reference Roy CR: The Dot/lcm transporter of Legionella pneumophila : a bacterial conductor of vesicle trafficking that orchestrates the establishment of a replicative organelle in eukaryotic hosts. Int J Med Microbiol 2002, 291:463–467.CrossRefPubMed Roy CR: The Dot/lcm transporter of Legionella pneumophila : a bacterial conductor of vesicle trafficking that orchestrates the establishment of a replicative organelle in eukaryotic hosts. Int J Med Microbiol 2002, 291:463–467.CrossRefPubMed
4.
go back to reference Segal G, Feldman M, Zusman T: The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii . FEMS Microbiol Rev 2005, 29:65–81.CrossRefPubMed Segal G, Feldman M, Zusman T: The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii . FEMS Microbiol Rev 2005, 29:65–81.CrossRefPubMed
5.
go back to reference Edelstein PH, Edelstein MA, Higa F, Falkow S: Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc Natl Acad Sci USA 1999, 96:8190–8195.CrossRefPubMedPubMedCentral Edelstein PH, Edelstein MA, Higa F, Falkow S: Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc Natl Acad Sci USA 1999, 96:8190–8195.CrossRefPubMedPubMedCentral
7.
go back to reference Marston BJ, Lipman HB, Breiman RF: Surveillance for Legionnaires' disease. Risk factors for morbidity and mortality. Arch Intern Med 1994, 154:2417–2422.CrossRefPubMed Marston BJ, Lipman HB, Breiman RF: Surveillance for Legionnaires' disease. Risk factors for morbidity and mortality. Arch Intern Med 1994, 154:2417–2422.CrossRefPubMed
8.
go back to reference Reingold AL: Role of legionellae in acute infections of the lower respiratory tract. Rev Infect Dis 1988, 10:1018–1028.CrossRefPubMed Reingold AL: Role of legionellae in acute infections of the lower respiratory tract. Rev Infect Dis 1988, 10:1018–1028.CrossRefPubMed
9.
go back to reference Tkatch LS, Kusne S, Irish WD, Krystofiak S, Wing E: Epidemiology of legionella pneumonia and factors associated with legionella-related mortality at a tertiary care center. Clin Infect Dis 1998, 27:1479–1486.CrossRefPubMed Tkatch LS, Kusne S, Irish WD, Krystofiak S, Wing E: Epidemiology of legionella pneumonia and factors associated with legionella-related mortality at a tertiary care center. Clin Infect Dis 1998, 27:1479–1486.CrossRefPubMed
10.
go back to reference Torres A, Serra-Batlles J, Ferrer A, Jiménez P, Celis R, Cobo E, Rodriguez-Roisin R: Severe community-acquired pneumonia. Epidemiology and prognostic factors. Am Rev Respir Dis 1991, 144:312–318.CrossRefPubMed Torres A, Serra-Batlles J, Ferrer A, Jiménez P, Celis R, Cobo E, Rodriguez-Roisin R: Severe community-acquired pneumonia. Epidemiology and prognostic factors. Am Rev Respir Dis 1991, 144:312–318.CrossRefPubMed
11.
go back to reference Ware LB, Matthay MA: Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001, 163:1376–1383.CrossRefPubMed Ware LB, Matthay MA: Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001, 163:1376–1383.CrossRefPubMed
12.
go back to reference Li X, Shu R, Filippatos G, Uhal BD: Apoptosis in lung injury and remodeling. J Appl Physiol 2004, 97:1535–1542.CrossRefPubMed Li X, Shu R, Filippatos G, Uhal BD: Apoptosis in lung injury and remodeling. J Appl Physiol 2004, 97:1535–1542.CrossRefPubMed
13.
go back to reference Song Y, Mao B, Qian G: The role of apoptosis and Fas/FasL in lung tissue in patients with acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi 1999, 22:610–612.PubMed Song Y, Mao B, Qian G: The role of apoptosis and Fas/FasL in lung tissue in patients with acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi 1999, 22:610–612.PubMed
14.
go back to reference Gao LY, Abu Kwaik Y: Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect Immun 1999, 67:862–870.PubMedPubMedCentral Gao LY, Abu Kwaik Y: Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect Immun 1999, 67:862–870.PubMedPubMedCentral
15.
go back to reference Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ: HMG-1 as a mediator of acute lung inflammation. J Immunol 2000, 165:2950–2954.CrossRefPubMed Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ: HMG-1 as a mediator of acute lung inflammation. J Immunol 2000, 165:2950–2954.CrossRefPubMed
16.
go back to reference Yamada S, Yakabe K, Ishii J, Imaizumi H, Maruyama I: New high mobility group box 1 assay system. Clin Chim Acta 2006, 372:173–178.CrossRefPubMed Yamada S, Yakabe K, Ishii J, Imaizumi H, Maruyama I: New high mobility group box 1 assay system. Clin Chim Acta 2006, 372:173–178.CrossRefPubMed
17.
go back to reference Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992, 119:493–501.CrossRefPubMed Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992, 119:493–501.CrossRefPubMed
19.
go back to reference Sakahira H, Enari M, Nagata S: Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998, 391:96–99.CrossRefPubMed Sakahira H, Enari M, Nagata S: Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998, 391:96–99.CrossRefPubMed
20.
go back to reference Herr I, Gassler N, Friess H, Büchler MW: Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis 2007, 12:271–291.CrossRefPubMed Herr I, Gassler N, Friess H, Büchler MW: Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis 2007, 12:271–291.CrossRefPubMed
21.
go back to reference Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267:1456–1462.CrossRefPubMed Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267:1456–1462.CrossRefPubMed
22.
go back to reference Hay S, Kannourakis G: A time to kill: viral manipulation of the cell death program. J Gen Virol 2002, 83:1547–1564.CrossRefPubMed Hay S, Kannourakis G: A time to kill: viral manipulation of the cell death program. J Gen Virol 2002, 83:1547–1564.CrossRefPubMed
23.
go back to reference Moss JE, Aliprantis AO, Zychlinsky A: The regulation of apoptosis by microbial pathogens. Int Rev Cytol 1999, 187:203–259.CrossRefPubMed Moss JE, Aliprantis AO, Zychlinsky A: The regulation of apoptosis by microbial pathogens. Int Rev Cytol 1999, 187:203–259.CrossRefPubMed
24.
go back to reference Weinrauch Y, Zychlinsky A: The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol 1999, 53:155–187.CrossRefPubMed Weinrauch Y, Zychlinsky A: The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol 1999, 53:155–187.CrossRefPubMed
25.
go back to reference Fink SL, Cookson BT: Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005, 73:1907–1916.CrossRefPubMedPubMedCentral Fink SL, Cookson BT: Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005, 73:1907–1916.CrossRefPubMedPubMedCentral
26.
go back to reference Müller A, Hacker J, Brand BC: Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection. Infect Immun 1996, 64:4900–4906.PubMedPubMedCentral Müller A, Hacker J, Brand BC: Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection. Infect Immun 1996, 64:4900–4906.PubMedPubMedCentral
27.
go back to reference Arakaki N, Higa F, Koide M, Tateyama M, Saito A: Induction of apoptosis of human macrophages in vitro by Legionella longbeachae through activation of the caspase pathway. J Med Microbiol 2002, 51:159–168.CrossRefPubMed Arakaki N, Higa F, Koide M, Tateyama M, Saito A: Induction of apoptosis of human macrophages in vitro by Legionella longbeachae through activation of the caspase pathway. J Med Microbiol 2002, 51:159–168.CrossRefPubMed
28.
go back to reference Gross A, Terraza A, Ouahrani-Bettache S, Liautard JP, Dornand J: In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 2000, 68:342–351.CrossRefPubMedPubMedCentral Gross A, Terraza A, Ouahrani-Bettache S, Liautard JP, Dornand J: In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 2000, 68:342–351.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998, 391:43–50.CrossRefPubMed Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998, 391:43–50.CrossRefPubMed
31.
go back to reference Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, Wang X: The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 1998, 95:8461–8466.CrossRefPubMedPubMedCentral Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, Wang X: The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 1998, 95:8461–8466.CrossRefPubMedPubMedCentral
32.
go back to reference Jänicke RU, Sprengart ML, Wati MR, Porter AG: Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998, 273:9357–9360.CrossRefPubMed Jänicke RU, Sprengart ML, Wati MR, Porter AG: Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998, 273:9357–9360.CrossRefPubMed
33.
go back to reference Creagh EM, Conroy H, Martin SJ: Caspase-activation pathways in apoptosis and immunity. Immunol Rev 2003, 193:10–21.CrossRefPubMed Creagh EM, Conroy H, Martin SJ: Caspase-activation pathways in apoptosis and immunity. Immunol Rev 2003, 193:10–21.CrossRefPubMed
34.
go back to reference Desagher S, Martinou JC: Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000, 10:369–377.CrossRefPubMed Desagher S, Martinou JC: Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000, 10:369–377.CrossRefPubMed
36.
go back to reference Gao LY, Abu Kwaik Y: Activation of caspase 3 during Legionella pneumophila -induced apoptosis. Infect Immun 1999, 67:4886–4894.PubMedPubMedCentral Gao LY, Abu Kwaik Y: Activation of caspase 3 during Legionella pneumophila -induced apoptosis. Infect Immun 1999, 67:4886–4894.PubMedPubMedCentral
37.
go back to reference Fischer SF, Vier J, Müller-Thomas C, Häcker G: Induction of apoptosis by Legionella pneumophila in mammalian cells requires the mitochondrial pathway for caspase activation. Microbes Infect 2006, 8:662–669.CrossRefPubMed Fischer SF, Vier J, Müller-Thomas C, Häcker G: Induction of apoptosis by Legionella pneumophila in mammalian cells requires the mitochondrial pathway for caspase activation. Microbes Infect 2006, 8:662–669.CrossRefPubMed
38.
go back to reference Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A: The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 1999, 96:2396–2401.CrossRefPubMedPubMedCentral Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A: The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 1999, 96:2396–2401.CrossRefPubMedPubMedCentral
39.
go back to reference Hilbi H, Chen Y, Thirumalai K, Zychlinsky A: The interleukin 1 beta-converting enzyme, caspase 1, is activated during Shigella flexneri -induced apoptosis in human monocyte-derived macrophages. Infect Immun 1997, 65:5165–5170.PubMedPubMedCentral Hilbi H, Chen Y, Thirumalai K, Zychlinsky A: The interleukin 1 beta-converting enzyme, caspase 1, is activated during Shigella flexneri -induced apoptosis in human monocyte-derived macrophages. Infect Immun 1997, 65:5165–5170.PubMedPubMedCentral
40.
go back to reference Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, Zychlinsky A: Shigella -induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 1998, 273:32895–32900.CrossRefPubMed Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, Zychlinsky A: Shigella -induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 1998, 273:32895–32900.CrossRefPubMed
41.
go back to reference Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P: HMGB1: guiding immunity from within. Trends Immunol 2005, 26:381–387.CrossRefPubMed Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P: HMGB1: guiding immunity from within. Trends Immunol 2005, 26:381–387.CrossRefPubMed
42.
go back to reference Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ: HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285:248–251.CrossRefPubMed Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ: HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285:248–251.CrossRefPubMed
43.
go back to reference Scaffidi P, Misteli T, Bianchi ME: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418:191–195.CrossRefPubMed Scaffidi P, Misteli T, Bianchi ME: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418:191–195.CrossRefPubMed
44.
go back to reference Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS: The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 2006, 291:1318–1325.CrossRef Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS: The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 2006, 291:1318–1325.CrossRef
45.
go back to reference Herr I, Pfitzenmaier J: Glucocorticoid use in prostate cancer and other solid tumours: implications for effectiveness of cytotoxic treatment and metastases. Lancet Oncol 2006, 7:425–430.CrossRefPubMed Herr I, Pfitzenmaier J: Glucocorticoid use in prostate cancer and other solid tumours: implications for effectiveness of cytotoxic treatment and metastases. Lancet Oncol 2006, 7:425–430.CrossRefPubMed
46.
go back to reference Maruta K, Miyamoto H, Hamada T, Ogawa M, Taniguchi H, Yoshida S: Entry and intracellular growth of Legionella dumoffii in alveolar epithelial cells. Am J Respir Crit Care Med 1998, 157:1967–1974.CrossRefPubMed Maruta K, Miyamoto H, Hamada T, Ogawa M, Taniguchi H, Yoshida S: Entry and intracellular growth of Legionella dumoffii in alveolar epithelial cells. Am J Respir Crit Care Med 1998, 157:1967–1974.CrossRefPubMed
Metadata
Title
Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone
Authors
Makoto Furugen
Futoshi Higa
Kenji Hibiya
Hiromitsu Teruya
Morikazu Akamine
Shusaku Haranaga
Satomi Yara
Michio Koide
Masao Tateyama
Naoki Mori
Jiro Fujita
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2008
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-9-39

Other articles of this Issue 1/2008

Respiratory Research 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.